Comparison of Prognosis Methods for the Energy Consumption of Machines and Further Development with Regard to Increasing Data Availability

Article Preview

Abstract:

An increasing number of companies establish energy management systems for continuous improvement in their energy efficiency and for this intensify monitoring their current energy consumption. These data can be used to gain further information about the production and to find potentials to increase its energy efficiency. In the procurement process of machinery and equipment or in the planning phase of production systems and building services, information about energy demand is rarely available, though it would be valuable for an early inclusion of energy efficiency in these processes. Therefore this paper discusses different forecast methods for energy consumption of machinery and evaluates in particular their universal applicability, effort and accuracy by analyzing them through the example of a packaging machine. In addition this paper proposes a further usage of energy-related data of machinery, which can be automatically acquired by monitoring systems for prognosticating their energy consumption as well as a possible distribution approach of this information. Therefore an own forecast method is presented, which shall process the energy-related data combined with information about dominant parameters of the product, the usage of the machine and the environmental conditions. For the distribution concept it was taken into account that the generated and shared information has to be abstracted in a way that no critical secrets of the company are revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-72

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] International Energy Agency OECD/IEA, CO2 Emissions from fuel combustion – Highlights, 2015 Edition, Paris, (2015).

Google Scholar

[2] A. Deckmann, S. Ferati, P. Karcher, S. Leu, R. Fourmont, Erfolgsfaktoren für die Einführung und den Betrieb eines Energiemanagementsystems nach DIN EN ISO 50001, R. Jochem (ed. ), first ed., Fraunhofer-Institut für Produktionsanagen und Konstruktionstechnik IPK, Berlin, (2014).

DOI: 10.30844/im_22-6_54-58

Google Scholar

[3] V. Schmidt, M. Graßl, G. Reinhart, Contribution for the life cycle oriented evaluation of costs and resource efficiency of production machines in procurement, submitted to Applied Mechanics and Materials Vol. 655 (2014) pp.9-14.

DOI: 10.4028/www.scientific.net/amm.655.9

Google Scholar

[4] Verband Deutscher Maschinen- und Anlagenbau VDMA, Prognosemodell für die Lebenszykluskosten von Maschinen und Anlagen (34160), (2006).

DOI: 10.1007/978-3-8349-9721-0_1

Google Scholar

[5] M. Dervisopoulos, CO$TRA. Life Cycle Costs Transparent, Darmstadt, (2008).

Google Scholar

[6] J. B. Dahmus, T. G. Gutowski, An Environmental Analysis of Machining, submitted to International Mechanical Engineering Congress and Exposition, (2004).

Google Scholar

[7] F. Draganescu, M. Gheorghe, C. V. Doicin, Models of machine tool efficiency and specific consumed energy, submitted to Journal of Materials Processing Technology 141, 2003, p.9–15.

DOI: 10.1016/s0924-0136(02)00930-5

Google Scholar

[8] A. R. Rodrigues, R. T. Coelho, Influence of the tool edge geometry on specific cutting energy at high-speed cutting, submitted to Journal of the Brazilian Society of Mechanical Sciences and Engineering 29, 2007, p.279–83.

DOI: 10.1590/s1678-58782007000300007

Google Scholar

[9] M. U. Uluer, H. Ö. Ünver, K. Akkuş, S. E. Kılıç, A Model for Predicting Theoretical Process Energy Consumption of Rotational Parts Using STEP AP224 Features, submitted to Re-engineering Manufacturing for Sustainability, Singapore, (2013).

DOI: 10.1007/978-981-4451-48-2_23

Google Scholar

[10] A. Pramanik, L. C. Zhang, J. A. Arsecularatne, Prediction of cutting forces in machining of metal matrix composites, submitted to International Journal of Machine Tools and Manufacture 46, 2006, p.1795–1803.

DOI: 10.1016/j.ijmachtools.2005.11.012

Google Scholar

[11] H. -S. Yoon, J. -Y. Lee, M. -S. Kim, S. -H. Ahn, Empirical power-consumption model for material removal in three-axis milling, to Journal of Cleaner Production 78, 2014, p.54–62.

DOI: 10.1016/j.jclepro.2014.03.061

Google Scholar

[12] H. Shao, H. L. Wang, X. M. Zhao, A cutting power model for tool wear monitoring in milling, submitted to International Journal of Machine Tools and Manufacture 44, 2004, p.1503–1509.

DOI: 10.1016/j.ijmachtools.2004.05.003

Google Scholar

[13] M. Sarwar, M. Persson, H. Hellbergh, J. Haider, Measurement of specific cutting energy for evaluating the efficiency of bandsawing different workpiece materials, submitted to International Journal of Machine Tools and Manufacture 49, 2009, p.958.

DOI: 10.1016/j.ijmachtools.2009.06.008

Google Scholar

[14] E. Abele, S. Braun, P. Schraml, Holistic Simulation Environment for Energy Consumption Prediction of Machine Tools, submitted to Procedia CIRP 29, 2015, p.251–256.

DOI: 10.1016/j.procir.2015.02.059

Google Scholar

[15] J. Madan, M. Mani, J. H. Lee, K. W. Lyons, Energy performance evaluation and improvement of unit-manufacturing processes. Injection molding case study, submitted to Journal of Cleaner Production 105, 2015, p.157–70.

DOI: 10.1016/j.jclepro.2014.09.060

Google Scholar

[16] T. G. Gutowski, M. S. Branham, J. B. Dahmus, A. J. Jones, A. Thiriez, D. P. Sekulic, Thermodynamic Analysis of Resources Used in Manufacturing Processes, submitted to Environmental Science & Technology 43, 2009 , p.1584–1590.

DOI: 10.1021/es8016655

Google Scholar

[17] T. G. Gutowski, J. B. Dahmus, A. Thiriez, Electrical Energy Requirements for Manufacturing Processes, Cambridge, (2006).

Google Scholar

[18] C. Eisele, Simulationsgestützte Optimierung des elektrischen Energiebedarfs spanender Werkzeugmaschinen, Aachen, (2014).

Google Scholar

[19] W. Li, S. Kara, B. Kornfeld, Developing Unit Process Models for Predicting Energy Consumption in Industry: A Case of Extrusion Line, submitted to Re-engineering Manufacturing for Sustainability, Singapore, (2013).

DOI: 10.1007/978-981-4451-48-2_24

Google Scholar

[20] S. Velchev, I. Kolev, K. Ivanov, S. Gechevski, Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning, submitted to Journal of Cleaner Production 80, 2014, p.139.

DOI: 10.1016/j.jclepro.2014.05.099

Google Scholar

[21] G. Reich, M. Reppich, Regenerative Energietechnik. Überblick über ausgewählte Technologien zur nachhaltigen Energieversorgung, first ed., Wiesbaden, (2013).

DOI: 10.1007/978-3-8348-8614-9

Google Scholar

[22] S. -J. Shin, J. Woo, S. Rachuri, Predictive Analytics Model for Power Consumption in Manufacturing, submitted to Procedia CIRP 15, 2014, p.153–158.

DOI: 10.1016/j.procir.2014.06.036

Google Scholar

[23] J. M. Chien, D. Dornfeld, Semi-empirical Modeling of the Energy Consumed during the Injection Molding Process, Re-engineering Manufacturing for Sustainability, Singapore, (2013).

DOI: 10.1007/978-981-4451-48-2_49

Google Scholar

[24] Y. Seow, S. Rahimifard, A framework for modelling energy consumption within manufacturing systems, submitted to CIRP Journal of Manufacturing Science and Technology 4, 2011, p.258–264.

DOI: 10.1016/j.cirpj.2011.03.007

Google Scholar

[25] N. Weinert, Vorgehensweise für Planung und Betrieb energieeffizienter Produktionssysteme, Dissertation. Berlin, (2010).

Google Scholar