Performance of Tailing Contaminated Soils Solidified by Phosphate-Based Binder

Article Preview

Abstract:

This paper presents a study on soils, from the Baoshan mining site, contaminated with heavy metals and stabilized by using a new phosphate-based binder. Unconfined compression test, sequential extraction procedure, X-ray diffraction and scanning electron microscopic procedures are carried out. This study aims to explore the effects of binder type, binder content and curing time of solidified contaminated soils on leaching and strength properties of the soils contaminated with heavy metals in the mining area. The results showed that as the curing time is increased from 0 d to 28 d, the new phosphate-based binder stabilized contaminated soil underwent several changes: 1) improved the strength and 2) decreased the exchangeable Zn and Pb and increased the residual contents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-110

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. T. Basta, S. L. McGowen, Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil, Environ. Pollut. 127(1) (2004) 73-82.

DOI: 10.1016/s0269-7491(03)00250-1

Google Scholar

[2] B. Wang, Z. Xie, J. Chen, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L. ) in a mining tailing contaminated soil, J. Environ. Sci. 20(9) (2008).

DOI: 10.1016/s1001-0742(08)62157-9

Google Scholar

[3] G. M. Hettiarachchi, G. M. P. And, M. D. Ransom, In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide, Environ. Sci. Technol. 34(21) (2000) 4614-4619.

DOI: 10.1021/es001228p

Google Scholar

[4] G. Machender, R. Dhakate, L. Prasanna, et al. Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India, Environ. Earth Sci. 63(5) (2011) 945-953.

DOI: 10.1007/s12665-010-0763-4

Google Scholar

[5] J. M. Soriano-Disla, T. W. Speir, I. Gómez, et al. Evaluation of Different Extraction Methods for the Assessment of Heavy Metal Bioavailability in Various Soils, Water Air Soil Pollut. 213(1-4) (2010) 471-483.

DOI: 10.1007/s11270-010-0400-6

Google Scholar

[6] S. Das, S. C. Patnaik, H. K. Sahu, et al. Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India, Trans. Nonferrous Metals Soc. China, 23(2) (2013) 484-493.

DOI: 10.1016/s1003-6326(13)62489-9

Google Scholar

[7] X. H. Li, The mine environmental pollution and remediation in large metal mines, Lanzhou: Lanzhou University, (2007).

Google Scholar

[8] F. R. Burden, D. Donnert, T. Godish, I. D. Mckelvie, Environmental monitoring handbook, Boston: The McGraw-Hill Companies, (2004).

Google Scholar

[9] W. Guo, R. X. Zhao, J. Zhang, et al. Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia, Chin. J. Environ. Sci. 32(10) (2011) 3099-3105.

Google Scholar

[10] R. Herwijnen, T. R. Hutchings, A. Al-Tabbaa, et al. Remediation of metal contaminated soil with mineral-amended composts, Environ. Pollut. 150(3) (2007) 347-354.

DOI: 10.1016/j.envpol.2007.01.023

Google Scholar

[11] R. Terzano, M. Spagnuolo, L. Medici, et al. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation, Appl. Clay Sci. 29(2) (2005) 99-110.

DOI: 10.1016/j.clay.2004.12.006

Google Scholar

[12] Y. J. Du, M. L. Wei, K. R. Reddy, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization, J. Environ. Manag. 146 (2014) 179-188.

DOI: 10.1016/j.jenvman.2014.07.035

Google Scholar

[13] Y. Y. Yang, H. L. Wu, Y. J. Du, Strength and Leaching Characteristics of Heavy Metal Contaminated Soils Solidified by Cement, J. Residuals Sci. Technol., 11(3) (2014) 71-98.

Google Scholar

[14] S. Paria, P. K. Yuet, Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review, Environ. Rev. 14(4) (2006) 217-255 (39).

DOI: 10.1139/a06-004

Google Scholar

[15] D. Dermatas, X. Meng, Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils, Eng. Geol. 70(3-4) (2003) 377-394.

DOI: 10.1016/s0013-7952(03)00105-4

Google Scholar

[16] Y. Liang, X. C. Wang, X. D. Cao, et al. Immobilization of Pb, Cu, and Zn in a Multi-Metal Contaminated Soil Amended with Triple Superphosphate Fertilizer and Phosphate Rock Tailing, Adv. Mater. Res. 356-360 (2011) 1716-1718.

DOI: 10.4028/www.scientific.net/amr.356-360.1716

Google Scholar

[17] Y. J. Du, N. J. Jiang, S. Y. Liu, F. Jin, D. N. Singh, A. Pulppara, Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay, Can. Geotech. J. 1(3) (2014) 289-302.

DOI: 10.1139/cgj-2013-0177

Google Scholar

[18] C. K. Chau, F. Qiao, Z. J. Li, Microstructure of magnesium potassium phosphate cements, Constr. Build. Mater. 25(6) (2011) 2911-2917.

Google Scholar

[19] S. Mignardi, A. Corami, V. Ferrini, Evaluation of the effectiveness of phosphate treatment for the remediation of mine iste soils contaminated with Cd, Cu, Pb, and Zn, Chemosphere, 86(4) (2012) 354-360.

DOI: 10.1016/j.chemosphere.2011.09.050

Google Scholar

[20] A. Navarro, E. Cardellach, M. Corbella, Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials, J. Hazard. Mater. 186(2) (2011) 1576-1585.

DOI: 10.1016/j.jhazmat.2010.12.039

Google Scholar

[21] P. Desogus, P. P. Manca, G. Orrù, et al. Stabilization–solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate, Minerals Eng. 45 (2013) 47-54.

DOI: 10.1016/j.mineng.2013.01.003

Google Scholar