Micropitting in Wind Turbine Gearboxes: Calculation of the Safety Factor and Optimization of the Gear Geometry

Article Preview

Abstract:

If the contact pressure between mating flanks of a gear set is increased, the lubricant film thickness in between is reduced to a level where the asperities of the flanks start to touch. This case where the surface roughness is of similar value as the EHD film thickness is called “mixed friction”. Due to the metallic contact of the asperities and the movement of the flanks with respect to each other, the flanks are damaged. The damaged flanks appear dull or greyish, hence the name “grey-staining” (or “Graufleckigkeit” in German), see e.g. [4] or [1]. Micropitting are small cracks on the surface of the gears (as opposed to pitting, where the cracks form below the surface), which grow into the material. The size of the damages is about 10-20 mm depth, 25-100 mm length and 10-20 mm width. Micropitting is mainly observed with case carburized gears but may also be found in nitrided, induction hardened or through hardened gears. Micropitting mainly occurs in areas of negative specific sliding. Negative specific sliding is to be found along the path of contact between point A and C on the driving gear and between point C and E on the driven gear.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

898-903

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ISO 10825: 1995, Gears – Wear and Damage to Gear Teeth – Terminology, (1995).

Google Scholar

[2] J. -B. Franke, R. Grzybowski, Germanischer Lloyd Wind Energie GmbH, Lifetime predicttion of gear teeth regarding to micropitting in consideration of WEC operation states, DEWK (2004).

Google Scholar

[3] G. Lützig, Grossgetriebe-Graufleckigkeit: Einfluss von Flankenmodifikationen und Oberflächenrauigkeit, Dissertation Ruhr-Universität Bochum, (2007).

Google Scholar

[4] J. Theissen, Berechnung der Sicherheit gegen Graufleckenbildung von Industriegetrie ben auf der Grundlage des neuen Rechenverfahrens nach FVA 259, DMK (2003).

Google Scholar

[5] AGMA 925-A03, Effects of Lubrication on Gear Surface Distress.

Google Scholar

[6] W. J. Bartz, Tribologische Aspekte bei Zahnradgetrieben – Speziell für Fahrzeuge, 5. Internationales CTI Symposium.

Google Scholar

[7] FVA-Informationsblatt Nr. 54/7, Testverfahren zur Untersuchung des Schmierstoffeinflus- ses auf die Entstehung von Graufleckigkeit bei Zahnrädern, FVA Vereinigung, Frankfurt, (1999).

Google Scholar

[8] ISO/CD TR 6336-7 Calculation of load capacity of spur and helical gears – Part 7: Calculation of micropitting. Not published.

DOI: 10.3403/30371491u

Google Scholar

[9] ISO/TR 15144: 2010, Calculation of micropitting load capacity of cylindrical spur and helical gears – Part 1: Introduction and basic principles.

DOI: 10.3403/30284819

Google Scholar

[10] AGMA 6006.

Google Scholar

[11] Martin Veltrup-Neil, Christoph Weiermann, Graufleckigkeit ist und bleibt ein Mangel, Erneuerbare Energien 5/(2007).

Google Scholar

[12] KISSsoft gear software 03-(2011).

Google Scholar