The Imitation of Muscles Stretching Device

Article Preview

Abstract:

This paper presents a review of some of the applications for artificial muscle and several material of artificial muscle. We focus attention on the polymer material artificial muscle, which responds to electrical stimulation with a significant change in shape or size. Through our research on a variety of materials and the analysis of the mechanical properties of muscle movement, finally we designed the artificial muscle device the imitation of muscles stretching device. This article describes the structure and performance of the device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-223

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. P. Cartmell, A. J. Żak, O. A. Ganilova. Applications for shape memory alloys in structural and machine dynamics, Nonlinear Dynamic Phenomena in Mechanics. Springer Netherlands, 2012: 115-158.

DOI: 10.1007/978-94-007-2473-0_3

Google Scholar

[2] F. Yutaka, H. Takayuki, D. Fengzhi, Fundamental research on polymer material as artificial muscle. Artif. Life Robot. 12(1-2) (2012) 232-235.

Google Scholar

[3] Y. Bar-Cohen. Electroactive polymers as artificial muscles-reality and challenges, Proceedings of the 42nd AIAA Structures, Structural Dynamics, and Materials Conference (SDM), Gossamer Spacecraft Forum (GSF), held in Seattle WA, April 16-19 (2001).

DOI: 10.2514/6.2001-1492

Google Scholar

[4] N. A. Stakhin: Electrostriction in dielectrics and metals. Russian Phys. J. (1998).

Google Scholar

[5] V. M. Bogomol'nyi, Calculation of the electrostriction effect in thin-film metal-ferroelectric-metal structures. Tech. Phys. (1999).

DOI: 10.1134/1.1259362

Google Scholar

[6] G. Kloos, Magnetostatic Maxwell stresses and magnetostriction. Electr. Eng. (1998).

Google Scholar

[7] G. Kloos, The dependence of electrostatic stresses at the surface of a dielectric on its orientation in an electric field. J. Phys. D: Appl. Phys. 28 (1995) 2424-2429.

DOI: 10.1088/0022-3727/28/12/006

Google Scholar

[8] G. Todd, O. Ben, A. A. Iain, Touch Sensitive Dielectric Elastomer Artificial Muscles. Electroact. Polym. Mater. Springer US (2012) pp.131-141.

Google Scholar

[9] J. D. Nam, H. R. Choi, J. C. Koo, Y. K. Lee, K. J. Kim, Dielectric Elastomers for Artificial Muscles. Electroact. Polym. Robot. Appl. Springer London, (2007), pp.37-48.

Google Scholar

[10] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenges, Vol. PM136, SPIE-Society of Photo-optical Instrumentation Engineers, Bellingham, WA (2004).

DOI: 10.1117/3.547465

Google Scholar

[11] G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, Actuation response of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14(12) (2003) 787–793.

DOI: 10.1177/104538903039260

Google Scholar

[12] G. Kofod, P. Sommer-Larsen, Silicone dielectric elastomer actuators: finite-elasticity model of actuation. Sens. Actuators. A: Phys. 122(2) (2005) 273–283.

DOI: 10.1016/j.sna.2005.05.001

Google Scholar

[13] R. Baughman, L. Shacklett, R. Elsenbaumer, Conducting polymer electromechanical actuator. Kluwer Academic, Dordrecht, 1990, p.559–582.

Google Scholar

[14] Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles. SPIE (2004), p.529–581.

DOI: 10.1117/12.538698

Google Scholar

[15] J. Hayashida, F. Dai, Y. Fujihara, Fundamental study of dielectric elastomer as artificial muscle. Proceedings of the 11th International Symposium on Artificial Life and Robotics (AROB, CD version, Oita, Japan, Jan. 23–25, 2006, pp.611-614.

Google Scholar