[1]
N. A. Fleck, I. Sridhar, End compression of sandwich columns, Compos.: Part A, 33(3) (2002) 353–359.
DOI: 10.1016/s1359-835x(01)00118-x
Google Scholar
[2]
V. V. Bolotin, Debond in Composite structures: its origin, buckling, growth and stability. Compos. Part B, 27(2) (1996) 129–145.
DOI: 10.1016/1359-8368(95)00035-6
Google Scholar
[3]
P. F. Liu, S. J. Hou. J. K. Chu, et al. Finite element analysis of postbuckling and debond of composite laminates using virtual crack closure technique. Compos. Struct. 93(6) (2011) 1549 –1560.
DOI: 10.1016/j.compstruct.2010.12.006
Google Scholar
[4]
S. EL-SAYED, S. Sridriaran. Cohesive layer models for predicting debond growth and crack kinking in sandwich structures. Int. J. Fract. 117(1) (2002) 63–84.
Google Scholar
[5]
C. Berggreen, B. C. Simonsen. Non-uniform compressive strength of debonded sandwich panels – II, Fracture mechanics investigation. Sandwich Struct. Mater. 7 (2005) 483–517.
DOI: 10.1177/1099636205054790
Google Scholar
[6]
F. Avile´s, L. A. Carlsson. Post-buckling and debond propagation in sandwich panels subject to in-plane compression. Eng. Fract. Mech. 74(5) (2007) 794–806.
DOI: 10.1016/j.engfracmech.2006.04.023
Google Scholar
[7]
C. R. Østergaard. Buckling driven debonding in sandwich columns. Int. J. Solids Struct. 45(5) (2008) 1264–1282.
DOI: 10.1016/j.ijsolstr.2007.09.005
Google Scholar
[8]
G. R. Wang, L. Zhang, J. Zhang, et al. Numerical analysis of debond buckling and growth in slender laminated composite using cohesive element method, Comput. Mater. Sci. 50(1) (2010) 20–31.
DOI: 10.1016/j.commatsci.2010.07.003
Google Scholar
[9]
W. Wagner, F. Gruttman, W. Sprenger. A finite element formulation for the simulation of propagating debonds in layered composite structures, Int. J. Numer. Meth. Eng. 51(11) (2015) 1337–1359.
DOI: 10.1002/nme.210
Google Scholar
[10]
S. Abrate, J. F. Ferrero, P. Navarro. Cohesive zone models and impact damage predictions for composite structures. Meccanica. 50(10) (2015) 2587-2620.
DOI: 10.1007/s11012-015-0221-1
Google Scholar
[11]
R. Moslemian, C. Berggreen, L. A. Carlsson, F. Avilés, Failure Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study, J. Mech. Mater. Struct. 4(7-8) (2009) 1469–1487.
DOI: 10.2140/jomms.2009.4.1469
Google Scholar
[12]
P. R. Jeyakrishnan, K. K. S. K. Chockalingam, R. Nara yanasamy. Studies on buckling behavior of honeycomb sandwich panel. Int. J. Adv. Manuf. Tech. 65(5-8) (2013) 803-815.
DOI: 10.1007/s00170-012-4218-9
Google Scholar
[13]
ABAQUS User's Manual, Version 6. 14.
Google Scholar
[14]
J. W. Hu, Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB) Isolator Devices Subjected to Near-Fault (NF) Ground Motions. Sustain. 7 (2015) 111-137.
DOI: 10.3390/su7010111
Google Scholar
[15]
J. W. Hu, Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses. Mater. 7 (2014) 1122-1141.
DOI: 10.3390/ma7021122
Google Scholar
[16]
ASTM D3039M−08. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International. West Conshohocken (PA, USA); (2001).
Google Scholar
[17]
ASTM D6641M–01. Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined Loading Compression (CLC) Test Fixture. ASTM International. West Conshohocken (PA, USA); (2001).
DOI: 10.1520/d6641_d6641m-16e01
Google Scholar
[18]
ASTM D3518M–01. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite. ASTM International. West Conshohocken (PA, USA); (2001).
Google Scholar
[19]
A. Turon, C. G. Davila, P. P. Camanho, J. Costa. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engng. Fract. Mech. 74 (2007) 1665–1682.
DOI: 10.1016/j.engfracmech.2006.08.025
Google Scholar