High Performance of Na2/3Ni1/4Mn3/4O2 Thin-Film Cathode for Sodium-Ion Micro-Batteries

Article Preview

Abstract:

Thin films of Na2/3Ni1/4Mn3/4O2 were prepared on stainless steel substrates by pulsed laser deposition technique. X-ray diffraction and Field-emission Scanning Electron Microscope results show that the thin film deposited at 750°C is highly preferred orientation with homogeneous nanoscale particles. Galvanostatic charge/discharge measurement results reveal that the reversible capacity retention is 91% after 30 cycles with a high initial discharge capacity of 175.3 mAhg-1 at a current density of 13 mAg-1. It also exhibits excellent rate capability, as the current density increases to 260 mAg-1, about 80% of its initial capacity can be retained. After the high rate measurement, the NNMO electrode can deliver a discharge capacity of 110.4 mAhg-1 when the current density was reduced back to 13 mAg-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-88

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energ. Environ. Sci. 4 (2011) 3680-3688.

DOI: 10.1039/c1ee01782a

Google Scholar

[2] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energ. Environm. Sci. 5(3) (2012) 5884-5901.

DOI: 10.1039/c2ee02781j

Google Scholar

[3] M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Sodium-Ion Batteries, Adv. Funct. Mater. 23 (2013) 947-958.

DOI: 10.1002/adfm.201200691

Google Scholar

[4] X. Liu, H. Xu, Y. Huang, X. Hu, Direct planting of ultrafine MoO2+δ nanoparticles in carbon nanofibers by electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries, Phys. Chem. Chem. Phys. 18 (2016).

DOI: 10.1039/c6cp01806h

Google Scholar

[5] T. Jimbo, P. Kim, K. Suu, Production Technology for Thin-film Lithium Secondary Battery, Energy Proc. 14 (2012) 1574-1579.

DOI: 10.1016/j.egypro.2011.12.1135

Google Scholar

[6] W. Xiong, Q. Xia, H. Xia, Three-dimensional self-supported metal oxides as cathodes for microbatteries, Funct. Mater. Lett. 7(5) (2014) 1430003.

DOI: 10.1142/s1793604714300035

Google Scholar

[7] C. Julien, A. Gorenstein, Materials Design and Optimization for Thin-Film Microbatteries, Ionics 1 (1995) 193-210.

DOI: 10.1007/bf02426018

Google Scholar

[8] K. Park, B. -C. Yu, J. B. Goodenough, Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery, Chem. Mater. 27(19) (2015) 6682-6688.

DOI: 10.1021/acs.chemmater.5b02684

Google Scholar

[9] R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2–NaxCoO2 phase diagram, Nature Mater. 10 (2011) 74-80.

DOI: 10.1038/nmat2920

Google Scholar

[10] E. Talaie, V. Duffort, H. L. Smith, B. Fultz, L. F. Nazar, Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability, Energ. Environm. Sci. 8 (2015) 2512-2523.

DOI: 10.1039/c5ee01365h

Google Scholar

[11] M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm, C. Delmas, P2-NaxVO2 system as electrodes for batteries and electron-correlated materials, Nat. Mater. 12 (2013) 74-80.

DOI: 10.1038/nmat3478

Google Scholar

[12] J. Billaud, G. Singh, A. R. Armstrong, E. Gonzalo, V. Roddatis, M. Armand, T. Rojo, P. G. Bruce, Na0. 67Mn1−xMgxO2 (0 ≤ x ≤ 0. 2): a high capacity cathode for sodium-ion batteries, Energ. Environ. Sci. 7(4) (2014) 1387-1391.

DOI: 10.1039/c4ee00465e

Google Scholar

[13] Z. Lu, J. R. Dahn, In Situ X-Ray Diffraction Study of P2­Na2/3[Ni1/3Mn2/3]O2, J. Electrochem. Soc. 148(11) (2001) A1225-1229.

Google Scholar

[14] W. Zhao, A. Tanaka, K. Momosaki, S. Yamamoto, F. Zhang, Q. Guo, H. Noguchi, Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries, Electrochimica Acta 170 (2015) 171-181.

DOI: 10.1016/j.electacta.2015.04.125

Google Scholar

[15] S. Takeuchi, H. Tan, K. K. Bharathi, G. R. Stafford, J. Shin, S. Yasui, I. Takeuchi, L. A. Bendersky, Epitaxial LiCoO2 Films as a Model System for Fundamental Electrochemical Studies of Positive Electrodes, ACS Appl. Meter. Interf. 7(15) (2015).

DOI: 10.1021/am508512q

Google Scholar