Precursor Derived Ceramic Method to Fabricate SiC Ceramic Composite Coatings on Metallic Substrates

Article Preview

Abstract:

In this paper, the polymer precursor derived ceramic (PDC) method, that was used to fabricate the silicon carbide (SiC) ceramic composite coatings on metallic substrates, was briefly summarized. Two different fabrication mechanism of ceramic coatings by PDC method were mainly introduced. One was that Al powder as the active fillers converted into AlN due to the action with N2. The other was that Al powder as the active fillers converted into Al2O3 due to the action with O2. So fabrication mechanism of ceramic coatings by PDC method would be still the research focus in the future. Compared with the other methods, the advantages and disadvantages of PDC method preparing ceramic coatings were displayed. According to the existent problems and future development direction of PDC method, the key research objectives were presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. S. Xu, Theory and technology of surface engineering, Beijing: National Defend Industry Press, (1999).

Google Scholar

[2] L. Q. Wang, Corrosion and protection technology of shipping, Zhong Guo Shui Yun. 8 (2008) 20-21.

Google Scholar

[3] B. Zhang, Y. S. Li, Application of ceramic coatings in the power station equipment, Mod. Manuf. Technol. Equip. 6 (2008) 76-78.

Google Scholar

[4] B. S. Xu, Z. W. Ou, S. N. Ma, et al. Nano surface engineering, China Mech. Eng. 11 (2000) 707-712.

Google Scholar

[5] B. S. Xu, H. D. Wang, S. Dong, et a1. Nano surface engineering in the 21st century, Trans. Mater. Heat Treat. 25 (2004) 8-12.

Google Scholar

[6] B. S. Xu, Remanufacturing engineering and automation of surface engineering technology, Heat Treat. Metals, 33 (2008) 9-14.

Google Scholar

[7] H. Kim, M. Chen, Q. Yang, et a1. Sol-gel alumina environmental barrier coatings for SiC grit, Mater. Sci. Eng. A. 420(1-2) (2006) 150-154.

DOI: 10.1016/j.msea.2006.01.087

Google Scholar

[8] M. Handke, M. Sitarz, E. Dlugon, Amorphous SiCxOy coatings from ladder-like polysilsesquioxanes, Mol. Struct. 993(s1-3) (2011) 193-197.

DOI: 10.1016/j.molstruc.2010.12.017

Google Scholar

[9] W. W. Gong, P. Z. Gao, W. X. Wang, Characterization and oxidation properties of biomorphic porous carbon with SiC gradient coating prepared by PIP method, Ceram. Int. 37(6) (2011) 1739-1746.

DOI: 10.1016/j.ceramint.2011.03.008

Google Scholar

[10] E. Ediz, S. Ugur, Y. Senol, Structural characterization of plasma sprayed basalt-SiC glass-ceramic coatings, Ceram. Int. 37(3) (2011) 883-889.

DOI: 10.1016/j.ceramint.2010.11.005

Google Scholar

[11] Y. S. Jang, J. Michael, M. Verena, et al. SiC ceramic micropatterns from polycarbosilanes, J. Eur. Ceram. Soc. 30(13) (2010) 2773-2779.

DOI: 10.1016/j.jeurceramsoc.2010.05.019

Google Scholar

[12] C. Sophie, L. Sébastien, B. Pierre et al. Surface treatment effects on ceramic matrix composites: Case of a thermal sprayed alumina coating on SiC composites, Surf. Coat. Technol. 205(4) (2010) 1047-1054.

DOI: 10.1016/j.surfcoat.2010.07.021

Google Scholar

[13] E. Bouyer, G. Schiller, M. Muller et al. Thermal plasma chemical vapor deposition of Si-based ceramic coatings from liquid precursors, Plasma Chem. Plasma Process. 21(4) (2001) 523-546.

Google Scholar

[14] P. Nadejda, A. Emad, P. F. Andreas et al. Thermal conductivity of porous SiC composite ceramics derived from paper precursor, Ceram. Int. 36(7) (2010) 2203-2207.

DOI: 10.1016/j.ceramint.2010.05.028

Google Scholar

[15] M. Jayasankar, G. M. Anilkumar, V. S. Smitha et al. Low temperature needle like mullite grain formation in sol-gel precursors coated on SiC porous substrates, Thin Solid Films. 519(22) (2011) 7672-7676.

DOI: 10.1016/j.tsf.2011.05.053

Google Scholar

[16] Z. M. Fan, X. G. Wang, Y. X. Qiang, Preparation of Al2O3/SiO2 multiphase insulation coating on electric-heating porous SiC ceramics, J. Xi'an Univ. Sci. Technol. 28 (2008) 72-75.

Google Scholar

[17] Z. F. Xie, S. R. Wang, Z. H. Chen, Active filler (aluminum–aluminum nitride) controlled polycarbosilane pyrolysis, J. Inorg. Organomet. Polym. 16(1) (2006) 69-81.

DOI: 10.1007/s10904-006-9030-2

Google Scholar

[18] D. X. Yang, Y. X. Yu, P. Xiao et al. Fabrication of silicon carbide (SiC) coatings from pyrolysis of polycarbosilane/aluminum, J. Inorg. Organomet. Polym. 21 (2011) 534-540.

DOI: 10.1007/s10904-011-9481-y

Google Scholar

[19] P. Xiao, D. X. Yang, Novel chemical method tofabricate SiC/Al2O3 ceramic composite coatings on metallic substrates, China Surf. Eng. 22 (2009) 24-29.

Google Scholar

[20] S. Zhu, B. S. Xu, J. K. Yao, High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun, J. Mater. Sci. Forum. 475-479 (2005) 3981-3984.

DOI: 10.4028/www.scientific.net/msf.475-479.3981

Google Scholar

[21] B. S. Xu, Z. X. Zhu, W. Zhang et a1. Sliding wear behavior of Fe-Al and Fe-A1/WC coatings prepared by high velocity arc spraying, Wear. 257(11) (2004) 1089-1095.

DOI: 10.1016/j.wear.2004.05.012

Google Scholar

[22] B. S. Xu, W. Zhang, W. P. Xu, Influence of oxides on high velocity arc sprayed Fe-A1/Cr3C2 composite coatings, Centr. South Univ. Technol. 12(3) (2005) 259-262.

DOI: 10.1007/s11771-005-0139-1

Google Scholar

[23] C. Wu, Y. L. Xi, Q. H. Wang, Preparation technology of nano-ceramic coatings, Dev. Appl. Mater. 25 (2010) 94-98.

Google Scholar

[24] S. Yajima, X. Hasegawa, J. Hayashi, et al. Synthesis of continuous SiC fibers with high tensile strength and modulus, J. Mater. Sci. 13(12) (1978) 2569-2576.

DOI: 10.1007/bf02402743

Google Scholar

[25] S. Yajima, X. Hasegawa, M. Omori, et al. Development of a SiC fibers with high tensile strength, Nature. 261 (1976) 683-685.

Google Scholar

[26] X. J. Ding, J. Z. Zhang, J. J. Li et al. Spray-Dried Alumina Granules for Extrusion, J. Inorg. Mater. 16(6) (2001) 1094-1100.

Google Scholar