A Study on Corrosion Behaviour of Magnesium Alloys

Article Preview

Abstract:

A biodegradable Mg-4Zn-0.6Zr alloy with different content of strontium (Sr) was prepared and studied for orthopedic applications biomaterials. The effects of Sr on the microstructure and corrosion degradation of the as-cast Mg-4Zn-0.6Zr-xSr (ZK40xSr) alloys were investigated. The optical micrograph (OM) observation, energy-dispersive spectrometer (EDS), X-ray diffractometer (XRD) and immersion test were used. The grain size of Mg-4Zn-0.6Zr alloys was reduced obviously with the addition of Sr. The excess of Sr would lead to grain size increasing and grain boundaries widening. The possible presence of the following constituent phases in the grain boundaries: α-Mg, Mg17Sr2, MgZn, ZnxSry binary and MgxZnySrz ternary phase. The formation of ZnxSry and MgxZnySrz phase owed to the larger difference of electronegativity values of Zn and Sr. The immersion tests indicated that the average corrosion rate of the as-cast ZK40xSr alloys increased with the increase of Sr content. It contributed to the micro-galvanic corrosion between the α-Mg with the continuous distribution of grain boundaries precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-77

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Nasution, H. Hermawan, Degradable Biomaterials for Temporary Medical Implants, Springer International Publishing, Berlin, Germany, (2016).

Google Scholar

[2] H. S. Brar, M. O. Platt, M. Sarntinoranont, P. I. Martin, M. V. Manuel, Magnesium as a biodegradable and bioabsorbable material for medical implants, Jom-J Min. Met. Mat. S. 61(9) (2009) 31-34.

DOI: 10.1007/s11837-009-0129-0

Google Scholar

[3] F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater. 6(5) (2010) 1680-1692.

Google Scholar

[4] B. L. Mordike, T. Ebert, Magnesium : Properties — applications — potential, Mater. Sci. Eng. A 302(1) (2001) 37-45.

Google Scholar

[5] A. Purnama, H. Hermawan, J. Couet, D. Mantovani, Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation, Acta Biomater. 6(5) (2010) 1800-1807.

DOI: 10.1016/j.actbio.2010.02.027

Google Scholar

[6] S. Farè, Q. Ge, M. Vedani, G. Vimercati, D. Gastaldi, F. Migliavacca, L. Petrini, S. Trasatti, Evaluation of material properties and design requirements for biodegradable magnesium stents, Matéria 15(2) (2010) 96-103.

DOI: 10.1590/s1517-70762010000200002

Google Scholar

[7] N. T. Kirkland, J. Lespagnol, N. Birbilis, M. P. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corros. Sci. 52(2) (2009) 287-291.

DOI: 10.1016/j.corsci.2009.09.033

Google Scholar

[8] Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater. 10(11) (2014) 4561-4573.

DOI: 10.1016/j.actbio.2014.07.005

Google Scholar

[9] Y. F. Zheng, X. N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng., R 77 (2014) 1-34.

Google Scholar

[10] D. Hong, P. Saha, D. T. Chou, B. Lee, B. E. Collins, Z. Tan, Z. Dong, P. N. Kumta, In vitro degradation and cytotoxicity response of Mg–4% Zn–0. 5% Zr (ZK40) alloy as a potential biodegradable material, Acta Biomater. 9(10) (2013) 8534-8547.

DOI: 10.1016/j.actbio.2013.07.001

Google Scholar

[11] W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B. W. Darvell, W. W. Lu, C. Jiang, L. Deng, D. Wang, Effects of strontium in modified biomaterials, Acta Biomater. 7(2) (2011) 800-808.

DOI: 10.1016/j.actbio.2010.08.031

Google Scholar

[12] P. J. Marie, Strontium ranelate: a physiological approach for optimizing bone formation and resorption, Bone 38 (2 Suppl 1) (2006) 10-14.

DOI: 10.1016/j.bone.2005.07.029

Google Scholar

[13] A. Oyane, K. Onuma, A. Ito, H. M. Kim, T. Kokubo, T. Nakamura, Formation and growth of clusters in conventional and new kinds of simulated body fluids, J Biomed. Mater. Res. A 64(2) (2003) 339-348.

DOI: 10.1002/jbm.a.10426

Google Scholar

[14] N. N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci. 52(2) (2010) 589-594.

DOI: 10.1016/j.corsci.2009.10.018

Google Scholar

[15] Z. Shi, J. Hofstetter, F. Cao, P. J. Uggowitzer, M. S. Dargusch, A. Atrens, Corrosion and stress corrosion cracking of ultra-high-purity Mg5Zn, Corros. Sci. 93 (2015) 330-335.

DOI: 10.1016/j.corsci.2015.01.032

Google Scholar

[16] ASTM International, Standard test methods for determining average grain size E110-96e3, West Conshohocken, USA, (2004).

Google Scholar

[17] E. F. Emley, Principles of Magnesium technology, Pergamon Press, Oxford, UK, (1966).

Google Scholar

[18] M. Qian, D. H. Stjohn, M. T. Frost, Effect of Soluble and Insoluble Zirconium on the Grain Refinement of Magnesium Alloys, Mater. Sci. Forum 419-422 (2003) 593-598.

DOI: 10.4028/www.scientific.net/msf.419-422.593

Google Scholar

[19] H. Li, Q. Peng, X. Li, K. Li, Z. Han, D. Fang, Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials, Mater. Des. 58 (2014) 43-51.

DOI: 10.1016/j.matdes.2014.01.031

Google Scholar

[20] M. Masoumi, M. Pekguleryuz, The influence of Sr on the microstructure and texture evolution of rolled Mg–1%Zn alloy, Mater. Sci. Eng. A 529 (2011) 207-214.

DOI: 10.1016/j.msea.2011.09.019

Google Scholar

[21] Y. C. Lee, A. K. Dahle, D. H. Stjohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A 31(11) (2000) 2895-2906.

DOI: 10.1007/bf02830349

Google Scholar

[22] X. N. Gu, X. H. Xie, N. Li, Y. F. Zheng, L. Qin, In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater. 8(6) (2012) 2360-2374.

DOI: 10.1016/j.actbio.2012.02.018

Google Scholar

[23] Y. Ding, Y. Li, C. Wen, Effects of Mg17Sr2 Phase on the Bio-Corrosion Behavior of Mg–Zr–Sr Alloys, Adv. Eng. Mater. 18(2) (2016) 259-268.

DOI: 10.1002/adem.201500222

Google Scholar

[24] R. G. Guan, A. F. Cipriano, Z. Y. Zhao, J. Lock, T. Di, T. Zhao, T. Cui, H. Liu, Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications - Alloy processing, microstructure, mechanical properties, and biodegradation, Mater. Sci. Eng. C 33 (2013).

DOI: 10.1016/j.msec.2013.04.054

Google Scholar

[25] M. Bornapour, N. Muja, D. Shum-tim, M. Cerruti, M. Pekguleryuz, Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite, Acta Biomater. 9(2) (2013) 5319-5330.

DOI: 10.1016/j.actbio.2012.07.045

Google Scholar

[26] H. S. Brar, J. Wong, M. V. Manuel, Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials, Mol. Cancer. Ther. 7 (2012) 87-95.

DOI: 10.1016/j.jmbbm.2011.07.018

Google Scholar

[27] W. U. Lu, F. S. Pan, M. B. Yang, W. U. Ju-ying, T. T. Liu, As-cast microstructure and Sr-containing phases of AZ31 magnesium alloys with high Sr contents, Trans. Nonferrous Met. Soc. China 21(4) (2011) 784-789.

DOI: 10.1016/s1003-6326(11)60781-4

Google Scholar

[28] K. D. Ralston, N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corro. 66(7) (2010) 319-324.

Google Scholar

[29] G. B. Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd. 468(1-2) (2009) 222-229.

DOI: 10.1016/j.jallcom.2008.01.084

Google Scholar