Effect of Phenylene Diamine Antioxidant on Physico-Chemical Properties of Methyl Grafted Natural Rubber Polymer Electrolytes

Article Preview

Abstract:

0.5 wt.% of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) was introduced into polymer electrolytes based on 30% poly(methyl-methacrylate) grafted natural rubber (MG30) in order to reduce the aging factor of MG30. The polymer electrolyte without 6PPD was used as control. All samples were prepared by using solution cast techniques. The effect of 6PPD in the electrolytes was analysed by using TGA, DSC and FTIR. TGA and DSC results revealed the thermal stability of MG30 electrolytes with 6PPD have higher thermal stability but lower glass transition temperature value. FTIR studies confirmed the existence of LiTF in the sample and prove the occurrence of polymer-salt complexation. Deconvolution techniques analysis on FTIR spectra shows the electrolyte sample with 6PPD display more ion dissociation which reflects to higher ionic conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fan, H. Li, L. Z. Fan, Q. Shi, Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries, J. Pow. Sour. 249 (2014).

DOI: 10.1016/j.jpowsour.2013.10.112

Google Scholar

[2] C. Zhang, X. Yang, W. Ren, Y. Wang, F. Su, J. X. Jiang, Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density, J. Pow. Sour. 317 (2016) 49–56.

DOI: 10.1016/j.jpowsour.2016.03.080

Google Scholar

[3] A. M. M. Ali, R. H. Y. Subban, H. Bahron, M. Z. A. Yahya, A. S. Kamisan, Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery, J. Pow. Sour. 244 (2013) 636–640.

DOI: 10.1016/j.jpowsour.2013.01.002

Google Scholar

[4] J. H. Baik, D. G. Kim, J. Shim, J. H. Lee, Y. S. Choi, J. C. Lee, Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries, Polym. (United Kingdom). 99 (2016).

DOI: 10.1016/j.polymer.2016.07.058

Google Scholar

[5] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, L. Chen, All solid-state polymer electrolytes for high-performance lithium ion batteries, Energy Storage Mater. 5 (2016) 139–164.

DOI: 10.1016/j.ensm.2016.07.003

Google Scholar

[6] B. Liang, Q. Jiang, S. Tang, S. Li, X. Chen, Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries, J. Pow. Sour. 307 (2016) 320–328.

DOI: 10.1016/j.jpowsour.2015.12.127

Google Scholar

[7] K. Nazir, S. F. Ayub, A. F. Aziz, A. M. M. Ali, M. Z. A. Yahya, Preparation and Characterization of Epoxidized-30% Poly(methyl methacrylate)-grafted Natural Rubber Polymer Electrolyte, J. Nano Res. 28 (2014) 163–170.

DOI: 10.4028/www.scientific.net/jnanor.28.163

Google Scholar

[8] N. H. M. Zaki, Z. S. Mahmud, N. I. Adam, A. H. Ahmad, A. M. M. Ali, M. Z. A. Yahya, Characterization of plasticized grafted natural rubber-30% poly (methyl methacrylate) (MG30) based polymer electrolytes, 2012 IEEE Symp. Business, Eng. Ind. Appl. Charact. (2012).

DOI: 10.1109/isbeia.2012.6422981

Google Scholar

[9] A. M. M. Ali, M. Z. A. Yahya, H. Bahron, R. H. Y. Subban, Electrochemical studies on polymer electrolytes based on poly(methyl methacrylate)-grafted natural rubber for lithium polymer battery, Ionics (Kiel). 12 (2006) 303–307.

DOI: 10.1007/s11581-006-0052-0

Google Scholar

[10] K. S. Yap, L. P. Teo, L. N. Sim, S. R. Majid, A. K. Arof, Investigation on dielectric relaxation of PMMA-grafted natural rubber incorporated with LiCF3SO3, Phys. B Condens. Matter. 407 (2012) 2421–2428.

DOI: 10.1016/j.physb.2012.03.039

Google Scholar

[11] Z. Cibulková, P. Šimon, P. Lehocký, J. Balko, Antioxidant activity of p-phenylenediamines studied by DSC, Polym. Degrad. Stab. 87 (2005) 479–486.

DOI: 10.1016/j.polymdegradstab.2004.10.004

Google Scholar

[12] Z. Cibulková, P. Lehock, K. Kosár, A. Chochulová, DSC study of antioxidant activity of selected p -phenylenediamines in styrene-butadiene rubber, J. Therm. Anal. Calorim. 97 (2009) 535–540.

DOI: 10.1007/s10973-008-9628-4

Google Scholar

[13] F. Cataldo, On the ozone protection of polymers having non-conjugated unsaturation, Polym. Degrad. Stab. 72 (2001) 287–296.

DOI: 10.1016/s0141-3910(01)00017-9

Google Scholar

[14] A. F. Aziz, A. M. M. Ali, Thermal oxidation studies on methyl grafted natural rubber polymer electrolytes with paraphenylene diamine additive, 2012 IEEE Colloq. Humanit. Sci. Eng. (2012) 719–723.

DOI: 10.1109/chuser.2012.6504406

Google Scholar

[15] A. L. Saroj, R. K. Singh, Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes, J. Phys. Chem. Solids. 73 (2012) 162–168.

DOI: 10.1016/j.jpcs.2011.11.012

Google Scholar

[16] C. Nah, J. H. Park, C. T. Cho, Y. W. Chang, S. Kaang, Specific heats of rubber compounds, J. Appl. Polym. Sci. 72 (1999) 1513–1522.

DOI: 10.1002/(sici)1097-4628(19990620)72:12<1513::aid-app2>3.0.co;2-i

Google Scholar

[17] A. Vallée, S. Besner, J. Prud'Homme, Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour, Electrochim. Acta. 37 (1992) 1579–1583.

DOI: 10.1016/0013-4686(92)80115-3

Google Scholar

[18] P. K. Varshney, S. Gupta, Natural polymer-based electrolytes for electrochemical devices: a review, Ionics (Kiel). 17 (2011) 479–483.

DOI: 10.1007/s11581-011-0563-1

Google Scholar

[19] A. M. M. Ali, R. H. Y. Subban, H. Bahron, T. Winie, F. Latif, M. Z. A. Yahya, Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies, Ionics (Kiel). 14 (2008) 491–500.

DOI: 10.1007/s11581-007-0199-3

Google Scholar

[20] W. Huang, R. Frech, Raman spectra of PPO-salt complexes: Mixed cations and mixed anions, Solid State Ionics. 53–56 (1992) 1095–1101.

DOI: 10.1016/0167-2738(92)90296-2

Google Scholar

[21] A. K. Arof, S. Amirudin, S. Z. Yusof, I. M. Noor, A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys. Chem. Chem. Phys. 16 (2014) 1856–67.

DOI: 10.1039/c3cp53830c

Google Scholar