[1]
M. Sumiya, Y. Kamo, etc. Fabrictaion and hard X-ray photoemission analysis of photocathodes with sharp solar-blind sensitivity using AlGaN films grown on Si substrates, Appl. Sur. Sci. 256(14) (2010) 4442-4446.
DOI: 10.1016/j.apsusc.2010.01.038
Google Scholar
[2]
D. J. Leopold, J. H. Buckley, P. Rebillot, High quantum efficiency ultraviolet/blue AlGaN/InGaN photocathodes grown by molecular-beam epitaxy, J. Appl. Phys. 98(4) (2005) 043525.
DOI: 10.1063/1.1999026
Google Scholar
[3]
C. I. Wu, A. Kahn, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Appl. Sur. Sci. 162-163 (2000) 250-255.
DOI: 10.1016/s0169-4332(00)00200-2
Google Scholar
[4]
M. Z. Yang, B. K. Chang, W. F. Rao, Relationship of the longer wavelength and the narrower surface band gap: For GaN and GaAlN photocathodes, Optik, 127(22) (2016) 10710-10715.
DOI: 10.1016/j.ijleo.2016.08.099
Google Scholar
[5]
O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin, M. Ulmer, B. Wessels, Development of GaN photocathodes for UV detectors, Nucl. Instrum. Meth. A. 567 (2006) 89-92.
DOI: 10.1016/j.nima.2006.05.117
Google Scholar
[6]
S. Uchiyma, Y. Takagi, M. Niigaki, H. Kan, GaN-based photocathodes with extremely high quantum efficiency, Appl. Phys. Lett. 86 (2005) 103511-1-103511-3.
DOI: 10.1063/1.1883707
Google Scholar
[7]
S. R. Zhao, H. P. T. Nguyen, Md. G. Kibria, Zetian Mi, III-Nitrides nanowire optoelectronics, Prog. Quant. Electron. 44 (2015) 14-68.
Google Scholar
[8]
O. H. W. Siegmund, J. B. McPhat et al., Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors, Nucl. Instr. Meth. Phys. Res. A. 695 (2012) 168-171.
DOI: 10.1016/j.nima.2011.11.022
Google Scholar
[9]
X. Q. Fu, B. K. Chang, X. H. Wang, B. Li, Y. J. Du, J. J. Zhang, Photoemsission of graded-doping GaN photocathode, Chin. Phys. B, 20(3) (2011) 03702-1-03702-5.
Google Scholar
[10]
M. Z. Yang, B. K. Chang, W. F. Rao, Relationship of the longer wavelength threshold and the narrower surface band gap: For GaN and GaAlN photocathodes, Optik. 127 (2016) 10710-10715.
DOI: 10.1016/j.ijleo.2016.08.099
Google Scholar
[11]
X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. U. Du, J. J. Zhang, R. G. Fu. Optimizing GaN photocathode structure for higher quantum efficiency, OPTIK. 123(9) (2012) 765-768.
DOI: 10.1016/j.ijleo.2011.05.032
Google Scholar
[12]
M. Diale, F. D. Auret, N. G. van der Berg, R. Q. Odendaal, W. D. Roos. Analysis of GaN cleaning procedures, Appl. Surf. Sci. 246 (2005) 279-289.
DOI: 10.1016/j.apsusc.2004.11.024
Google Scholar
[13]
L. C. Grabow, J. J. Uhlrich, T. F. Kuech, M. Mavrikakis. Effectiveness of in situ NH3 annealing treatments for the removal of oxygen from GaN surfaces, Surf. Sci. 603 (2009) 387-399.
DOI: 10.1016/j.susc.2008.11.029
Google Scholar
[14]
K. M. Tracy, W. J. Mecouch, R. F. Davis, R. J. Nemanich. Preparation and characterization of atomically clean, stoichiometric surfaces of n- and p-type GaN (0001), J. Appl. Phys. 94(5) (2003) 3164-3173.
DOI: 10.1063/1.1596369
Google Scholar
[15]
K. Prabhakaran, T. G. Andersson, K. Nozawa. Nature of native oxide on GaN surface and its reaction with Al, Appl. Phys. Lett. 69(21) (1996) 3212-3215.
DOI: 10.1063/1.117964
Google Scholar
[16]
X. Q. Fu, B. K. Chang, Y. S. Qian, J. J. Zhang, In-situ multi-information measurement system for preparing gallium nitride photocathode, Chin. Phys. B, 21(3) (2012) 030601-1-4.
DOI: 10.1088/1674-1056/21/3/030601
Google Scholar
[17]
X. H. Wang, B. K. Chang, Y. J. Du, J. L. Qiao, Quantum efficiency of GaN photocathode under different illumination, Appl. Phys. Lett. 99(4) (2011) 042102-1-3.
DOI: 10.1063/1.3614555
Google Scholar
[18]
X. Q. Du, B. K. Chang, Y. S. Qian, J. L. Qiao, J. Tian, Experimental Investigation of High-Low-Temperature Two-Step Preparation of GaN UV Photocathode Material, Acta Optica Sinica, 30(6) (2010) 1734-1738.
DOI: 10.3788/aos20103006.1734
Google Scholar
[19]
S. P. Grabowski, M. Schneider, H. Nienhaus, W. Monch, R. Dimitrov, O. Ambacher, M. Stutzmann, Electron affinity of AlxGa1-xN (0001) surfaces, Appl. Phys. Lett. 78(17) (2001) 2503-2505.
DOI: 10.1063/1.1367275
Google Scholar