XPS Studies of the Graded Band Gap AlxGa1-xN Material Grown by MOCVD

Article Preview

Abstract:

To characterize the properties of the as-grown AlxGa1-xN material for producing high property AlxGa1-xN photocathode in ultraviolet (UV) detection, the Ar+ sputtering and X-ray photoelectric spectroscopy (XPS) scan are performed. XPS spectra indicates that although processed with chemical solutions, AlxGa1-xN still contains large amount of carbon and oxide on the surface, which can be completely removed by Ar+ sputtering within few minutes. Ga3d and Al2p curves show that there are other compounds of Ga and Al on the surface but both become very concentrated when sputtering continues. The proportion of Al increases and that of Ga decreases gradually from surface to AlN bulk, which testify the graded band gap profile of the AlxGa1-xN sample. There is always a very slight amount of oxygen in the AlN layer, which is regarded as native element during material growth. At the interface of AlN and sapphire, an abrupt transition appears which can influence the properties of the AlxGa1-xN photocathode when it works with the transmittance mode

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sumiya, Y. Kamo, etc. Fabrictaion and hard X-ray photoemission analysis of photocathodes with sharp solar-blind sensitivity using AlGaN films grown on Si substrates, Appl. Sur. Sci. 256(14) (2010) 4442-4446.

DOI: 10.1016/j.apsusc.2010.01.038

Google Scholar

[2] D. J. Leopold, J. H. Buckley, P. Rebillot, High quantum efficiency ultraviolet/blue AlGaN/InGaN photocathodes grown by molecular-beam epitaxy, J. Appl. Phys. 98(4) (2005) 043525.

DOI: 10.1063/1.1999026

Google Scholar

[3] C. I. Wu, A. Kahn, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Appl. Sur. Sci. 162-163 (2000) 250-255.

DOI: 10.1016/s0169-4332(00)00200-2

Google Scholar

[4] M. Z. Yang, B. K. Chang, W. F. Rao, Relationship of the longer wavelength and the narrower surface band gap: For GaN and GaAlN photocathodes, Optik, 127(22) (2016) 10710-10715.

DOI: 10.1016/j.ijleo.2016.08.099

Google Scholar

[5] O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin, M. Ulmer, B. Wessels, Development of GaN photocathodes for UV detectors, Nucl. Instrum. Meth. A. 567 (2006) 89-92.

DOI: 10.1016/j.nima.2006.05.117

Google Scholar

[6] S. Uchiyma, Y. Takagi, M. Niigaki, H. Kan, GaN-based photocathodes with extremely high quantum efficiency, Appl. Phys. Lett. 86 (2005) 103511-1-103511-3.

DOI: 10.1063/1.1883707

Google Scholar

[7] S. R. Zhao, H. P. T. Nguyen, Md. G. Kibria, Zetian Mi, III-Nitrides nanowire optoelectronics, Prog. Quant. Electron. 44 (2015) 14-68.

Google Scholar

[8] O. H. W. Siegmund, J. B. McPhat et al., Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors, Nucl. Instr. Meth. Phys. Res. A. 695 (2012) 168-171.

DOI: 10.1016/j.nima.2011.11.022

Google Scholar

[9] X. Q. Fu, B. K. Chang, X. H. Wang, B. Li, Y. J. Du, J. J. Zhang, Photoemsission of graded-doping GaN photocathode, Chin. Phys. B, 20(3) (2011) 03702-1-03702-5.

Google Scholar

[10] M. Z. Yang, B. K. Chang, W. F. Rao, Relationship of the longer wavelength threshold and the narrower surface band gap: For GaN and GaAlN photocathodes, Optik. 127 (2016) 10710-10715.

DOI: 10.1016/j.ijleo.2016.08.099

Google Scholar

[11] X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. U. Du, J. J. Zhang, R. G. Fu. Optimizing GaN photocathode structure for higher quantum efficiency, OPTIK. 123(9) (2012) 765-768.

DOI: 10.1016/j.ijleo.2011.05.032

Google Scholar

[12] M. Diale, F. D. Auret, N. G. van der Berg, R. Q. Odendaal, W. D. Roos. Analysis of GaN cleaning procedures, Appl. Surf. Sci. 246 (2005) 279-289.

DOI: 10.1016/j.apsusc.2004.11.024

Google Scholar

[13] L. C. Grabow, J. J. Uhlrich, T. F. Kuech, M. Mavrikakis. Effectiveness of in situ NH3 annealing treatments for the removal of oxygen from GaN surfaces, Surf. Sci. 603 (2009) 387-399.

DOI: 10.1016/j.susc.2008.11.029

Google Scholar

[14] K. M. Tracy, W. J. Mecouch, R. F. Davis, R. J. Nemanich. Preparation and characterization of atomically clean, stoichiometric surfaces of n- and p-type GaN (0001), J. Appl. Phys. 94(5) (2003) 3164-3173.

DOI: 10.1063/1.1596369

Google Scholar

[15] K. Prabhakaran, T. G. Andersson, K. Nozawa. Nature of native oxide on GaN surface and its reaction with Al, Appl. Phys. Lett. 69(21) (1996) 3212-3215.

DOI: 10.1063/1.117964

Google Scholar

[16] X. Q. Fu, B. K. Chang, Y. S. Qian, J. J. Zhang, In-situ multi-information measurement system for preparing gallium nitride photocathode, Chin. Phys. B, 21(3) (2012) 030601-1-4.

DOI: 10.1088/1674-1056/21/3/030601

Google Scholar

[17] X. H. Wang, B. K. Chang, Y. J. Du, J. L. Qiao, Quantum efficiency of GaN photocathode under different illumination, Appl. Phys. Lett. 99(4) (2011) 042102-1-3.

DOI: 10.1063/1.3614555

Google Scholar

[18] X. Q. Du, B. K. Chang, Y. S. Qian, J. L. Qiao, J. Tian, Experimental Investigation of High-Low-Temperature Two-Step Preparation of GaN UV Photocathode Material, Acta Optica Sinica, 30(6) (2010) 1734-1738.

DOI: 10.3788/aos20103006.1734

Google Scholar

[19] S. P. Grabowski, M. Schneider, H. Nienhaus, W. Monch, R. Dimitrov, O. Ambacher, M. Stutzmann, Electron affinity of AlxGa1-xN (0001) surfaces, Appl. Phys. Lett. 78(17) (2001) 2503-2505.

DOI: 10.1063/1.1367275

Google Scholar