[1]
L. C. Bai, et al. Tribological mechanism of hydrogenated amorphous carbon film against pairs: a physical description, J. Appl. Phys. 110(110) (2011) 1-8.
Google Scholar
[2]
J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. 37(4-6) (2002) 129-281.
Google Scholar
[3]
C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings, Surf. Coat. Technol. 180(3) (2004) 76-84.
DOI: 10.1016/j.surfcoat.2003.10.022
Google Scholar
[4]
S. Y. Liu, Z. H. Zhang, Diamond films and diamond-like carbon films, Laser Infrared, 21(5) (1991) 11-13.
Google Scholar
[5]
S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamond-like carbon, J. Appl. Phys. 8(7) (1971) 2953-2958.
DOI: 10.1063/1.1660654
Google Scholar
[6]
M. Seiichiro, et al. Growth of diamond particles from methane-hydrogen gas, J. Mater. Sci. 17(11) (1982) 3106-3112.
DOI: 10.1007/bf01203472
Google Scholar
[7]
Y. Lifshitz, S. R. Kasi, J. W. Rabalais, Subplantation model for film growth from hyperthermal species, Phys. Rev. B Condens. Matter, 41(15) (1990) 10468-10480.
DOI: 10.1103/physrevb.41.10468
Google Scholar
[8]
W. Moller, Modeling of the sp3 /sp2 ratio in ion beam and plasma-deposited carbon films, Appl. Phys. Lett. 59(19) (1991) 2391-2393.
Google Scholar
[9]
Y. Lifshitz, et al. Analysis of carbon film growth from low energy ion beams using dynamic trajectory simulations and Auger electron spectroscopy, Nucl. Instrum. Methods Phys. Res. 83(3) (1993) 351-356.
DOI: 10.1016/0168-583x(93)95855-y
Google Scholar
[10]
N. Ren, et al. Latest development of hydrogen-free diamond-like carbon films, Vac. Sci. Technol. 3(23) (2003) 176-186.
Google Scholar
[11]
A. Erdemir, O. L. Eryilmaz, G. Fenske, Synthesis of diamond-like carbon films with superlow friction and wear properties, J. Vac. Sci. Technol. 18(4) (2000) 1987-(1992).
DOI: 10.1116/1.582459
Google Scholar
[12]
A. Erdemir, Genesis of superlow friction and wear in diamond-like carbon films Synthesis of diamond-like carbon films with superlow friction and wear properties, Tribol. Int. 37(11-12) (2004) 1005-1012.
DOI: 10.1016/j.triboint.2004.07.018
Google Scholar
[13]
J. C. Sánchez-López, et al. Tribological and mechanical properties of diamond-like carbon prepared by high-density plasma, Diam. Relat. Mater. 10(3-7) (2001) 1063-1069.
DOI: 10.1016/s0925-9635(00)00428-3
Google Scholar
[14]
J. C. Sánchez-López, et al. Friction-induced structural transformations of diamond-like carbon coatings under various atmospheres, Surf. Coat. Technol. 163-164(2) (2003) 444-450.
DOI: 10.1016/s0257-8972(02)00641-2
Google Scholar
[15]
S. Sundaram Vasan, Diamond -like carbon film as a protective coating for high strength steel and titanium alloy, Surf. Coat. Technol. 201(6) (2006) 2707-2711.
DOI: 10.1016/j.surfcoat.2006.05.046
Google Scholar
[16]
Q. J. Xue, L. P. Wang, Diamond-like carbon based film material, Beijing: Science Press, (2012).
Google Scholar
[17]
D. Beeman, et al. Modeling studies of amorphous carbon, Phys. Rev. B, 30(2) (1984) 870-875.
Google Scholar
[18]
J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R Report, 37(4-6) (2002) 129-281.
Google Scholar
[19]
J. Robertson, Deposition mechanisms of promoting sp3 bonding in diamond-like carbon, Diam. Rel. Mater. 2(5-7) (1993) 984-989.
DOI: 10.1016/0925-9635(93)90262-z
Google Scholar
[20]
S. Aisenberg, R. Chabot, Ion- beam deposition of thin films of diamond-like carbon, J. Appl. Phys. 42(7) (1971) 2953-2958.
DOI: 10.1063/1.1660654
Google Scholar
[21]
D. Dijkkamp, et al. Preparation of Y-Ba-Cu oxide super conduction thin films using pulsed laser evaporation from high Tc bulk material, Appl. Phys. Lett. 51 (1987) 619-621.
DOI: 10.1063/1.98366
Google Scholar
[22]
Y. Cheng, et al. Pulsed laser deposition and its application, Laser Optoelectron. Prog. (12) (2015) 1-10.
Google Scholar
[23]
Y. H. Ao, et al. Study on pulsed laser deposition technology, Laser Technol. 27(5) (2003) 453-456.
Google Scholar
[24]
M. Widner, et al. Ion acoustic wave excitation and ion sheath evolution, Phys. Fluids, 13(10) (1970) 2532.
DOI: 10.1063/1.1692823
Google Scholar
[25]
J. R. Conrad, et al. Plasma source ion implantation: A new, cost-effective, non-line-of-sight technique for ion implantation of materials, Surf. Coat. Technol. 36(3-4) (1988) 927-937.
DOI: 10.1016/0257-8972(88)90033-3
Google Scholar
[26]
Y. P. Wang, Modification of semiconductor materials by plasma immersion ion implantation, Shanghai: Fudan University, (2010).
Google Scholar
[27]
M. Xu, Investigation on modification of DLC system's adhesion strength by using ion implantation, Shanghai: Shanghai Jiao Tong University, (2007).
Google Scholar
[28]
R. H. Wei, C. M. Li, Plasma immersion ion deposition (PIID) research at SwRI and its practical applications, China Surf. Eng. 25(1) (2012) 1-10.
Google Scholar
[29]
M. A. S. Oliveira, A. K. Vieira, M. Massi, Electrochemical behavior of the Ti-6Al-4V alloy coated with a-C: H films, Diam. Rel. Mater. 12(12) (2003) 2136-2146.
DOI: 10.1016/s0925-9635(03)00253-x
Google Scholar
[30]
K. G. Saw, R. M. Idrus, K. Ibrahim, Diamond-like amorphous carbon thin films by d. c. magnetron sputtering, J. Mater. Sci. Lett. 19(9) (2000) 735-737.
Google Scholar
[31]
B. Angleraud, P. Tessier, Improved film deposition of carbon and carbon nitride materials on patterned substrates by ionized magnetron sputtering, Surf. Coat. Technol. 180(180) (2004) 59-65.
DOI: 10.1016/j.surfcoat.2003.10.037
Google Scholar
[32]
B. Window, N. Savvides, Unbalanced dc magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A, 4(3) (1986) 453-458.
Google Scholar
[33]
P. J. Kelly, R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vac. 56(3) (2000) 159-172.
DOI: 10.1016/s0042-207x(99)00189-x
Google Scholar
[34]
X. S. Guo, Deposition and characteristics of hydrogenated silicon films by hot-filament chemical vapor deposition, Lanzhou: Lanzhou University, (2011).
Google Scholar
[35]
H. Y. Wang, et al. Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone, Biomater. 31(32) (2010) 8181-8187.
DOI: 10.1016/j.biomaterials.2010.07.054
Google Scholar
[36]
M. S. Lehil, K. J. Bozic, Trends in total hip arthroplasty implant utilization in the united states, J. Arthroplasty, 29(10) (2014) 1915-(1918).
DOI: 10.1016/j.arth.2014.05.017
Google Scholar
[37]
L. C. Nguyen, M. S. Lehil, K. J. Bozic, Trends in total knee arthroplasty implant utilization, J. Arthroplasty, 30(5) (2015) 739-742.
DOI: 10.1016/j.arth.2014.12.009
Google Scholar
[38]
Q. Liu, Y. X. Zhou, Research progress on tribology of artificial hip joint, Int. J. Orthopaedics, 30(2) (2009) 74-77.
Google Scholar
[39]
Q. Y. Deng, et al. Diamond-like carbon film and its application on articular surface of artificial joint for increasing wear resistance, Surf. Technol. 45(5) (2016) 1-7.
Google Scholar
[40]
V. S. Sundaram, Diamond-like carbon film as a protective coating for high strength steel and titanium alloy, Surf. Coat. Technol. 201(6) (2006) 2707-2711.
DOI: 10.1016/j.surfcoat.2006.05.046
Google Scholar
[41]
F. Chen, et al. Diamond-like carbon thin films deposited on Ti6Al4V alloy surface by plasma gun at atmospheric pressure, Rare Metal Mater. Eng. 41(1) (2012) 124-128.
Google Scholar
[42]
B. K. Xiang, et al. Study on the deicing-frost resistance of the pavement concrete with the organosilicone coat, J. Funct. Mater. 39(9) (2008) 1577-1579.
Google Scholar