[1]
X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Two-dimensional soft nanomaterials: a fascinating world of materials, Adv. Mater. 27(3) (2015) 403-427.
DOI: 10.1002/adma.201401857
Google Scholar
[2]
M. Zhang, G. Gao, A. Kutana, Y. Wang, X. Zou, J. S. Tse, B. I. Yakobson, H. Li, H. Liu, Y. Ma, Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps, Nanoscale, 7 (2015) 12023-12029.
DOI: 10.1039/c5nr03344f
Google Scholar
[3]
F. W. Averill, J. R. Morris, V. R. Cooper, Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: Graphane and its BN-containing analogues, Phys. Rev. B, 80 (2009).
DOI: 10.1103/physrevb.80.195411
Google Scholar
[4]
M. O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Visible-Light-Emitting Layered BC2N Semiconductor, Phys. Rev. Lett. 77(1) (1996) 187-189.
Google Scholar
[5]
L. Lai, J. Lu, Half metallicity in BC2N nanoribbons: stability, electronic structures, and magnetism, Nanoscale, 3(6) (2011) 2583-2588.
DOI: 10.1039/c1nr10177c
Google Scholar
[6]
M. Kawaguchi, K. Ohnishi, K. Yamada, Y. Muramatsu, Intercalation Chemistry and Electronic Structure of Graphite-Like Layered Material BC2N, J. Electrochem. Soc. 157(3) (2010) P13-P17.
DOI: 10.1149/1.3280954
Google Scholar
[7]
Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Indirect Band Gap of Light-Emitting BC2N, Phys. Rev. Lett. 83(12) (1999) 2406-2408.
DOI: 10.1103/physrevlett.83.2406
Google Scholar
[8]
M. O. Watanabe, S. Itoh, K. Mizushima, T. Sasaki, Electrical properties of BC2N thin films prepared by chemical vapor deposition, J. Appl. Phys. 78(4) (1995) 2880-2882.
DOI: 10.1063/1.360029
Google Scholar
[9]
M. O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Visible-Light-Emitting Layered BC2N Semiconductor, Phys. Rev. Lett. 77(1) (1996) 187-189.
Google Scholar
[10]
Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, T. Sasaki, Indirect Band Gap of Light-Emitting BC 2 N, Phys. Rev. Lett. 83 (1999) 2406-2408.
DOI: 10.1103/physrevlett.83.2406
Google Scholar
[11]
A. Y. Liu, R. M. Wentzcovitch, M. L. Cohen, Atomic arrangement and electronic structure of BC 2 N, Phys. Rev. B Condens. Matter, 39 (1989) 1760-1765.
Google Scholar
[12]
G. A. Horridge, S. Kuck, K. Petermann, U. Pohlmann, G. Huber, H. Nozaki, S. Itoh, G. A. Horridge, S. Kuck, K. Petermann, Structural stability of BC2N, J. Phys. Chem. Solids, 57(1) (1996) 191-202.
Google Scholar
[13]
Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, Chiral tubules of hexagonal BC 2 N, Phys. Rev. B Condens. Matter, 50 (1994) 4976-4979.
DOI: 10.1103/physrevb.50.4976
Google Scholar
[14]
Z. Pan, H. Sun, C. Chen, Interlayer stacking and nature of the electronic band gap in graphitic B C 2 N : First-principles pseudopotential calculations, Phys. Rev. B, 73 (2006) 3304.
Google Scholar
[15]
J. Xie, Z. Y. Zhang, D. Z. Yang, D. S. Xue, M. S. Si, Theoretical Prediction of Carrier Mobility in Few-Layer BC2N, J. Phys. Chem. Lett. 5(23) (2014) 4073-4077.
DOI: 10.1021/jz502006z
Google Scholar
[16]
P. Lu, Z. Zhang, W. Guo, Magnetism in armchair BC2N nanoribbons, Appl. Phys. Lett. 96 (2010) 133103.
DOI: 10.1063/1.3367828
Google Scholar
[17]
P. Lu, Z. Zhang, W. Guo, Electronic Structures of BC2N Nanoribbons, J. Phys. Chem. C, 115(9) (2011) 3572-3577.
Google Scholar
[18]
K. Harigaya, T. Kaneko, Theoretical study of edge states in BC2N nanoribbons with zigzag edges, Nanoscale Res. Lett. 8 (2013) 1-6.
DOI: 10.1186/1556-276x-8-341
Google Scholar
[19]
R. D. Gonçalves, S. Azevedo, M. Machado, Structural and electronic properties of nanoribbons: A first principles study, Solid State Commun. 175-176 (2013) 132-138.
DOI: 10.1016/j.ssc.2013.07.028
Google Scholar
[20]
T. Kaneko, K. Harigaya, Dependence of Atomic Arrangement on Length of Flat Bands in Zigzag BC2N Nanoribbons, J. Phys. Soc. Jpn 82(4) (2013) 044708.
DOI: 10.7566/jpsj.82.044708
Google Scholar
[21]
X. Xiao, H. Li, J. Tie, J. Lu, Effect of edge modification on the zigzag BC 2 N nanoribbons, Chem. Phys. Lett. 658 (2016) 234-239.
DOI: 10.1016/j.cplett.2016.06.060
Google Scholar
[22]
B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508-517.
DOI: 10.1063/1.458452
Google Scholar
[23]
J. P. Perdew, K. Burke, M. Ernzerhof, Erratum: Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 1396.
DOI: 10.1103/physrevlett.78.1396
Google Scholar
[24]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[25]
N. -x. Qiu, Z. -y. Tian, Y. Guo, C. -h. Zhang, Y. -p. Luo, Y. Xue, A first-principle study of calcium-decorated BC2N sheet doped by boron or carbon for high hydrogen storage, Int. J. Hydrogen Energy, 39(17) (2014) 9307-9320.
DOI: 10.1016/j.ijhydene.2014.04.063
Google Scholar
[26]
S. Azevedo, Energetic and electronic structure of BC2N compounds, Eur. Phys. J. B, 44 (2005) 203-207.
DOI: 10.1140/epjb/e2005-00115-6
Google Scholar