Correlations among Physical and Mechanical Parameters of Rocks

Article Preview

Abstract:

In order to improve the accuracy of the rock mechanical parameters, the correlations among physical and mechanical parameters were investigated. A large number of laboratory testing results curried out on 408 rock specimens including metamorphic rocks, sedimentary rocks and igneous rocks. Through the statistical analysis of the laboratory test data, several regression equations among rock material parameters were established. The research suggests that, in addition to Poisson's ratio, the mechanical parameters (unconfined compressive strength (UCS), elastic Young’s modulus, shear modulus) relate well to physical parameters (porosity, P-wave velocity), and the relationships are mainly described by power and exponential correlations which have good squared regression coefficients. The correlation between elastic Young’s modulus and dynamic elastic modulus was established, as well as the relationship between shear modulus and dynamic shear modulus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-372

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C. Liu, J. S. Zhang, Q. Z. Du, et al. A study of size effect for compression strength of rock, J. Chin. J. Rock Soil Mech. Eng. 17(6) (1998) 611-614.

Google Scholar

[2] M. Q. You, C. D. Su, Effect of length of fine and coarse crystal marble specimens on uniaxial compression tests, J. Chin. J. Rock Mech. Eng. 23(22) (2004) 3754-3760.

Google Scholar

[3] S. J. Yang, H. Zeng, H. L. Wang, Experimental analysis on mechanical effescts of loading rates on limestone, J. Chin. J. Geotech. Eng. 27(7) (2005) 786-788.

Google Scholar

[4] K. Yang, L. Yuan, L. G. Qi, et al. Establishing predictive model for rock uniaxial compressive strength of No. 11-2 coal seam roof in Huainan mining area, J. Chin. J. Rock Soil Mech. Eng. 32(10) (2013) 1991-(1998).

Google Scholar

[5] H. S. Li, G. R. Wei, To determine rock shear strength parameters using random-fuzzy linear regression method, J. Tongji Univ. 21(3) (1993) 421-429.

Google Scholar

[6] W. L. Xiong, H. S. Li, A random-fuzzy method for treating the experimental data of mechanical parameters of rock sample, J. Chin. J. Geotech. Eng. 14(6) (1992) 101-108.

Google Scholar

[7] P. Horsrud, Estimating mechanical properties of shale from empirical correlations, J. SPE Drilling & Completion, 16(02) (2001) 68-73.

DOI: 10.2118/56017-pa

Google Scholar

[8] N. Sabatakakis, G. Koukis, G. Tsiambaos, et al. Index properties and strength variation controlled by microstructure for sedimentary rocks, J. Eng. Geol. 97(1) (2008) 80-90.

DOI: 10.1016/j.enggeo.2007.12.004

Google Scholar

[9] C. D. Chang, M. D. Zoback, A. Khaksar, Empirical relations between rock strength and physical properties in sedimentary rocks, J. Petrol. Sci. Eng. 51(3-4) (2006) 223-237.

DOI: 10.1016/j.petrol.2006.01.003

Google Scholar

[10] Z. R. Meng, J. C. Zhang, T. Joachim, Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks, J. Chin. J. Geophys. 49(5) (2006) 1505-1510.

DOI: 10.1002/cjg2.959

Google Scholar

[11] S. M. Liu, L. H. Xu, Y. Q. Li, Experimental study on rock physical and mechanical properties in Danjiangkou reservoir area, J. Huazhong Univ. Sci. Technol. (Urban Science Edition), 24(4) (2007) 54-58.

Google Scholar

[12] E. Hoek, E. T. Brown, Underground excavations in rock, The institution of mining and metallurgy, (1980).

Google Scholar

[13] R. P. Bewick, F. Amann, P. Kaiser, et al. Interpretation of UCS test results for engineering design, J. 13th ISRM Int. Congress of Rock Mech. (2015).

Google Scholar

[14] E. Brown, ISRM suggested methods. Rock characterization testing and monitoring. Pergamon Press, Oxford; (1981).

Google Scholar

[15] ASTM. Standard Test Method for Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. Annual Book of ASTM Standards, Section 4, Construction.

DOI: 10.1520/d3148-96

Google Scholar

[16] W. Dearman, F. Baynes, T. Irfan, Engineering grading of weathered granite, J. Eng. Geol. 12 (1978) 345-374.

DOI: 10.1016/0013-7952(78)90018-2

Google Scholar

[17] A. Tuǧrul, The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey, J. Eng. Geol. 75(3) (2004) 215-227.

DOI: 10.1016/j.enggeo.2004.05.008

Google Scholar

[18] L. Vernik, M. Bruno, C. Bovberg, Empirical relations between compressive strength and porosity of siliciclastic rocks, J. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30(7) (1993) 677-680.

DOI: 10.1016/0148-9062(93)90004-w

Google Scholar

[19] V. Palchik, Y. Hatzor, Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones, J. Eng. Geol. 63(3) (2002) 233-245.

DOI: 10.1016/s0013-7952(01)00084-9

Google Scholar

[20] E. Arioglu, N. Tokgoz, Estimation of rock strength: rapidly and reliably by the Schmidt hammer, J. Mines, Metals Fuels, 39(9-10) (1991) 327-330.

Google Scholar

[21] A. Best, C. McCann, J. Sothcott, The relationships between the velocities, attenuations and petrophysical properties of reservoir sedimentary rocks1, J. Geophys. Prospect. 42(2) (1994) 151-178.

DOI: 10.1111/j.1365-2478.1994.tb00204.x

Google Scholar

[22] D. H. Johnston, M. N. Toksöz, Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure, J. Geophys. Res.: Solid Earth, 85(B2) (1980) 925-936.

DOI: 10.1029/jb085ib02p00925

Google Scholar

[23] E. Mashinskii, Variants of the strain-amplitude dependence of elastic wave velocities in rocks under pressure, J. Geophys. Eng. 1(4) (2004) 295.

DOI: 10.1088/1742-2132/1/4/008

Google Scholar