[1]
J. W. Tukey, Exploratory data analysis. Pearson, (1977).
Google Scholar
[2]
J. L. Hintze and R. D. Nelson, Violin plots: a box plot-density trace synergism, The American Statistician, vol. 52, no. 2, pp.181-184, (1998).
DOI: 10.1080/00031305.1998.10480559
Google Scholar
[3]
K. Potter, J. Kniss, R. Riesenfeld, and C. R. Johnson, Visualizing summary statistics and uncertainty, in Computer Graphics Forum, vol. 29, pp.823-832, Wiley Online Library, (2010).
DOI: 10.1111/j.1467-8659.2009.01677.x
Google Scholar
[4]
K. Potter, P. Rosen, and C. R. Johnson, From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches, pp.226-249. Berlin, Heidelberg: Springer Berlin Heidelberg, (2012).
DOI: 10.1007/978-3-642-32677-6_15
Google Scholar
[5]
G. -P. Bonneau, H. -C. Hege, C. R. Johnson, M. M. Oliveira, K. Potter, P. Rheingans, and T. Schultz, Overview and State-of-the-Art of Uncertainty Visualization, pp.3-27. London: Springer London, (2014).
DOI: 10.1007/978-1-4471-6497-5_1
Google Scholar
[6]
S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink, Uflow: Visualizing uncertainty in fluid flow, " in Visualization, 96. Proceedings., pp.249-254, IEEE, (1996).
DOI: 10.1109/visual.1996.568116
Google Scholar
[7]
R. P. Botchen and D. Weiskopf, Texture-based visualization of uncertainty in flow fields, in 16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, October 23-28, 2005, pp.647-654, (2005).
DOI: 10.1109/vis.2005.97
Google Scholar
[8]
K. Bürger, P. Kondratieva, J. H. Krüger, and R. Westermann, Importance-driven particle techniques for flow visualization, in IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, March 5-7, 2008, pp.71-78, (2008).
DOI: 10.1109/pacificvis.2008.4475461
Google Scholar
[9]
M. W. Hlawitschka, J. Schäfer, M. Hummel, C. Garth, and H. -J. Bart, Populationsbilanzmodellierung mit einem Mehrphasen-CFD-Code und vergleichende Visualisierung, Chemie Ingenieur Technik, vol. 88, no. 10, pp.1480-1491, (2016).
DOI: 10.1002/cite.201600006
Google Scholar
[10]
M. Hummel, L. Jöckel, J. Schäfer, M. W. Hlawitschka, and C. Garth, Visualizing uncertain multi-phase fluid simulation data using a sampling approach, in EuroVis 2017 Proceedings, 2017. Accepted.
DOI: 10.4028/www.scientific.net/amm.869.139
Google Scholar
[11]
H. Hulburt and S. Katz, Some problems in particle technology - a statistical mechanical formulation, Chemical Engineering Science, vol. 19, no. 8, pp.555-574, (1964).
DOI: 10.1016/0009-2509(64)85047-8
Google Scholar
[12]
R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Science and Technology, vol. 27, pp.255-265, AUG (1997).
DOI: 10.1080/02786829708965471
Google Scholar
[13]
D. Marchisio and R. Fox, Solution of population balance equations using the direct quadrature method of moments, Journal of Aerosol Science, vol. 36, pp.43-73, Jan (2005).
DOI: 10.1016/j.jaerosci.2004.07.009
Google Scholar
[14]
C. Drumm, M. Attarakih, M. W. Hlawitschka, and H. -J. Bart, One-group reduced population balance model for CFD simulation of a pilot-plant extraction column, Industrial & Engineering Chemistry Research, vol. 49, no. 7, pp.3442-3451, (2010).
DOI: 10.1021/ie901411e
Google Scholar
[15]
D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi, Quadrature method of moments for population-balance equations, AIChE Journal, vol. 49, no. 5, pp.1266-1276, (2003).
DOI: 10.1002/aic.690490517
Google Scholar
[16]
J. Von Neumann, Various techniques used in connection with random digits, Monte Carlo Method, National Bureau of Standards Series, vol. 12, pp.36-38, (1951).
Google Scholar
[17]
J. S. Liu, Monte Carlo strategies in scientific computing. Springer Science & Business Media, (2008).
Google Scholar
[18]
J. R. Dormand and P. J. Prince, A family of embedded runge-kutta formulae, Journal of computational and applied mathematics, vol. 6, no. 1, pp.19-26, (1980).
DOI: 10.1016/0771-050x(80)90013-3
Google Scholar
[19]
M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics, vol. 27, pp.832-837, 09 (1956).
DOI: 10.1214/aoms/1177728190
Google Scholar