Evaluating Sampling Strategies for Visualizing Uncertain Multi-Phase Fluid Simulation Data

Article Preview

Abstract:

With Eulerian Method of Moment (MoM) solvers for the CFD simulation of multi-phase fluid flow, the positions of bubbles or droplets are not modeled explicitly, but through scalar fields of moments. These fields can be interpreted as probability density functions describing the distribution of bubble locations. To enable intuitive visualization that allows direct visual comparisons between simulation and physical experiment, explicit instances of the bubble distribution are required. In this work, we examine one sampling-based method for obtaining sets of bubble positions from density fields. Based on an example dataset, we study the influence of the main parameter, the kernel size, on the resulting bubble set. We identify a tradeoff between numerical accuracy and temporal continuity for the visualization.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. W. Tukey, Exploratory data analysis. Pearson, (1977).

Google Scholar

[2] J. L. Hintze and R. D. Nelson, Violin plots: a box plot-density trace synergism, The American Statistician, vol. 52, no. 2, pp.181-184, (1998).

DOI: 10.1080/00031305.1998.10480559

Google Scholar

[3] K. Potter, J. Kniss, R. Riesenfeld, and C. R. Johnson, Visualizing summary statistics and uncertainty, in Computer Graphics Forum, vol. 29, pp.823-832, Wiley Online Library, (2010).

DOI: 10.1111/j.1467-8659.2009.01677.x

Google Scholar

[4] K. Potter, P. Rosen, and C. R. Johnson, From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches, pp.226-249. Berlin, Heidelberg: Springer Berlin Heidelberg, (2012).

DOI: 10.1007/978-3-642-32677-6_15

Google Scholar

[5] G. -P. Bonneau, H. -C. Hege, C. R. Johnson, M. M. Oliveira, K. Potter, P. Rheingans, and T. Schultz, Overview and State-of-the-Art of Uncertainty Visualization, pp.3-27. London: Springer London, (2014).

DOI: 10.1007/978-1-4471-6497-5_1

Google Scholar

[6] S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink, Uflow: Visualizing uncertainty in fluid flow, " in Visualization, 96. Proceedings., pp.249-254, IEEE, (1996).

DOI: 10.1109/visual.1996.568116

Google Scholar

[7] R. P. Botchen and D. Weiskopf, Texture-based visualization of uncertainty in flow fields, in 16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, October 23-28, 2005, pp.647-654, (2005).

DOI: 10.1109/vis.2005.97

Google Scholar

[8] K. Bürger, P. Kondratieva, J. H. Krüger, and R. Westermann, Importance-driven particle techniques for flow visualization, in IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, March 5-7, 2008, pp.71-78, (2008).

DOI: 10.1109/pacificvis.2008.4475461

Google Scholar

[9] M. W. Hlawitschka, J. Schäfer, M. Hummel, C. Garth, and H. -J. Bart, Populationsbilanzmodellierung mit einem Mehrphasen-CFD-Code und vergleichende Visualisierung, Chemie Ingenieur Technik, vol. 88, no. 10, pp.1480-1491, (2016).

DOI: 10.1002/cite.201600006

Google Scholar

[10] M. Hummel, L. Jöckel, J. Schäfer, M. W. Hlawitschka, and C. Garth, Visualizing uncertain multi-phase fluid simulation data using a sampling approach, in EuroVis 2017 Proceedings, 2017. Accepted.

DOI: 10.4028/www.scientific.net/amm.869.139

Google Scholar

[11] H. Hulburt and S. Katz, Some problems in particle technology - a statistical mechanical formulation, Chemical Engineering Science, vol. 19, no. 8, pp.555-574, (1964).

DOI: 10.1016/0009-2509(64)85047-8

Google Scholar

[12] R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Science and Technology, vol. 27, pp.255-265, AUG (1997).

DOI: 10.1080/02786829708965471

Google Scholar

[13] D. Marchisio and R. Fox, Solution of population balance equations using the direct quadrature method of moments, Journal of Aerosol Science, vol. 36, pp.43-73, Jan (2005).

DOI: 10.1016/j.jaerosci.2004.07.009

Google Scholar

[14] C. Drumm, M. Attarakih, M. W. Hlawitschka, and H. -J. Bart, One-group reduced population balance model for CFD simulation of a pilot-plant extraction column, Industrial & Engineering Chemistry Research, vol. 49, no. 7, pp.3442-3451, (2010).

DOI: 10.1021/ie901411e

Google Scholar

[15] D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi, Quadrature method of moments for population-balance equations, AIChE Journal, vol. 49, no. 5, pp.1266-1276, (2003).

DOI: 10.1002/aic.690490517

Google Scholar

[16] J. Von Neumann, Various techniques used in connection with random digits, Monte Carlo Method, National Bureau of Standards Series, vol. 12, pp.36-38, (1951).

Google Scholar

[17] J. S. Liu, Monte Carlo strategies in scientific computing. Springer Science & Business Media, (2008).

Google Scholar

[18] J. R. Dormand and P. J. Prince, A family of embedded runge-kutta formulae, Journal of computational and applied mathematics, vol. 6, no. 1, pp.19-26, (1980).

DOI: 10.1016/0771-050x(80)90013-3

Google Scholar

[19] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics, vol. 27, pp.832-837, 09 (1956).

DOI: 10.1214/aoms/1177728190

Google Scholar