Research on Preparation and Properties of Edible Composite Protein Films

Article Preview

Abstract:

Edible films based on whey protein isolate and sodium caseinate were prepared by uniform design method. Glycerol has been incorporated into the edible films as a plasticizer. For all types of films, the influences of components and forming temperature on film properties, such as mechanical properties, water solubility, optical properties, gas and water vapor permeability were investigated. The results suggested that glycerol was the most important factor influencing all the properties of edible composite protein films. However, both increases of sodium caseinate concentration and glycerol content contributed to decrease the barrier properties of gas and water vapor. Among the films studied, group D (prepared with 5% whey protein isolate, 2% sodium caseinate, 50% glycerol at the temperature of 50 °C) showed moderate mechanical properties, optical properties, water solubility and maximum barrier properties of gas and water vapor, with tensile strength=5.85MPa, elongation=101.20%, transparency=91.4%, gas permeability rate=49.92cm3 m-2 d-1 0.1MPa-1 and water vapor permeability of 0.128×10-11 g m-1 s-1 Pa-1, 0.260×10-11 g m-1 s-1 Pa-1, 0.513×10-11 g m-1 s-1 Pa-1, 1.252×10-11 g m-1 s-1 Pa-1 at the RH gradient of 10-40%, 10-50%, 10-60%, 10-70%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-222

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Villalobosa, P. Herna´ndez-Mun˜ozb and A. Chiraltc: Food Hydrocolloids Vol. 20 (2006), p.502–509.

Google Scholar

[2] M.A. Rojas-Grau¨, R. Soliva-Fortuny and O. Martı´n-Belloso: Trends in Food Science and Technology Vol. 20 (2009), pp.438-447.

DOI: 10.1016/j.tifs.2009.05.002

Google Scholar

[3] C.M.B.S. Pintado, M.A.S.S. Ferreira and I. Sousa: Food Control Vol. 21 (2010), pp.240-246.

Google Scholar

[4] P. Herna´ndez-Mun˜oz, R. Villalobos and A. Chiralt: Food Hydrocolloids Vol. 18 (2004), p.647–654.

Google Scholar

[5] P.Y. Hamaguchi, W.Y. Weng and M. Tanaka: Food Chemistry Vol. 100 (2007), p.914–920.

Google Scholar

[6] J. N. Coupland, N.B. Shaw, F.J. Monahan, E.D. O'Riordan and M. O'Sullivan: Journal of Food Engineering Vol. 43 (2000), pp.25-30.

Google Scholar

[7] P.J.A. Sobral, J.S. Santos and F.T. Garcı´a: Food Engineering Vol. 70 (2005), p.93–100.

Google Scholar

[8] B. Bravin, D. Peressini and A. Sensidoni: Journal of Food Engineering Vol. 76 (2006), p.280–290.

Google Scholar

[9] E. Ayranci and S. Tunc: Food Chemistry Vol. 72 (2001), pp.231-236.

Google Scholar

[10] Y.Y. Li, X.L. Guo, P.F. Lin, C.C. Fan and Y.S. Song: Carbohydrate Polymers Vol. 81 (2001), pp.484-490.

Google Scholar

[11] L. Sa'nchez-Gonza'lez, M. Vargas, C. Gonza' lez-Martı'nez, A. Chiralt and M. Cha'fer: Food Hydrocolloids Vol. 23 (2009), pp.2102-2109.

Google Scholar

[12] G.A. Denavi, M. Pe´rez-Mateos, M.C. An˜o´n, P. Montero, A.N. Mauri and M.C. Go´ mez-Guille´n: Food Hydrocolloids Vol. 23 (2009), p.2094–2101.

DOI: 10.1016/j.foodhyd.2009.03.007

Google Scholar

[13] F.M. Monedero, M.J. Fabra, P. Talens and A. Chiralt: Journal of Food Engineering Vol. 97 (2010), p.228–234.

Google Scholar

[14] B.E. Dybowska: Food Engineering Vol. 104 (2011), pp.81-88.

Google Scholar

[15] J. Osés, M.F. Vázquez, R.P. Islas, S.A. Tomás, A.C. Orea and J.I. Maté: Journal of Food Engineering Vol. 92 (2009), pp.56-62.

DOI: 10.1016/j.jfoodeng.2008.10.029

Google Scholar

[16] K.G. Zinoviadou, K.P. Koutsoumanis and C.G. Biliaderis: Food Hydrocolloids Vol. 24 (2010), p.49–59.

Google Scholar

[17] M.J. Fabra, P. Talens and A. Chiralt: Journal of Food Engineering Vol. 85 (2008), p.393–400.

Google Scholar

[18] M.J. Fabra, A. Hambleton, P. Talens, F. Debeaufort and A. Chiralt: submitted to Journal of Food Hydrocolloids (2011). Doi: 10. 1016/j. foodhyd. 2011. 01. 012.

DOI: 10.1016/j.foodhyd.2011.01.012

Google Scholar

[19] E. Kristo, K.P. Koutsoumanis and C.G. Biliaderis: Food Hydrocolloids Vol. 22 (2008), pp.373-386.

Google Scholar

[20] L.J. Pan and J.Q. Chen: Experimental Design and Data Processing (Southeast University Press, Nanjing, China 2008).

Google Scholar

[21] Y.Z. Liang, K.T. Fang and Q.S. Xu: Chemometrics and Intelligent Laboratory Systems Vol. 58 (2001), p.43–57.

Google Scholar

[22] S.P. Ma, L.Y. Jiang and B.Y. Ma: Transactions of the CSAE Vol. 24 (2008), pp.29-33.

Google Scholar

[23] X.H. Zhao: Food Research and development Vol. 29 (2008), pp.23-26.

Google Scholar

[24] ASTM, 2009. Designation: D 882 – 09: Standard Test Method for Tensile Properties of Thin Plastic Sheeting.

Google Scholar

[25] ASTM D1003-61, 1997: Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics.

Google Scholar

[26] J.W. Rhim: Lebensmittel-Wissenschaft und-Technologie Vol. 37 (2004), P. 323-330.

Google Scholar

[27] ASTM, 2009. Designation: 1434 – 82: Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting.

Google Scholar

[28] ASTM E-398, 2003: Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement.

DOI: 10.1520/e0398-20

Google Scholar

[29] J.H. Zhang: Food Packing (China Agricultural Press, Beijing, China, 2002).

Google Scholar

[30] M. Schou, A. Longares, C. Montesinos-Herrero, F.J. Monahan, D. O'Riordan and M. O'Sullivan: Food Science and Technology Vol. 38 (2005), p.605–610.

DOI: 10.1016/j.lwt.2004.08.009

Google Scholar

[31] M.B. Perez-Gago and J.M. Krochta: Agricultural and Food Chemistry Vol. 48 (2000), p.2687–2692.

Google Scholar

[32] R. Villalobos, J. Chanona, P. Hernández, G. Gutiérrez and A. Chiralt: Food Hydrocolloids Vol. 19 (2005), pp.53-61.

DOI: 10.1016/j.foodhyd.2004.04.014

Google Scholar

[33] M.J. Fabra, P. Talens and A. Chiralt: Journal of Food Engineering Vol. 96 (2010), pp.356-364.

Google Scholar

[34] B.W.S. Souza, M.A. Cerqueira, A. Casariego, A.M.P. Lima, J.A. Teixeira and A.A. Vicente: Food Hydrocolloids Vol. 23 (2009), p.2110–2115.

DOI: 10.1016/j.foodhyd.2009.03.021

Google Scholar

[35] P. Herna´ndez-Mun˜oz, R. Villalobos, and A. Chiralt: Food Hydrocolloids Vol. 18 (2004), p.403–411.

Google Scholar

[36] M. Ozdemir, J.D. Floros: Journal of Food Engineering Vol. 86 (2008), p.215–224.

Google Scholar

[37] M.E. Gounga, S.Y. Xu and Z. Wang: Journal of Food Engineering Vol. 83 (2007), p.521–530.

Google Scholar

[38] M. Schou, A. Longares, C.M. Herrero, F.J. Monahan, D.O. Riordan and O. Sullivan: Food Science and Technology Vol. 38 (2005), p.605–610.

Google Scholar

[39] N.B. Shaw, F.J. Monahan, E.D. O'Riordan, M. O'Sullivan: Journal of Food Engineering Vol. 51 (2002), p.299–304.

Google Scholar

[40] I. Bodnar, A. C. Alting and M. Verschueren: Food Hydrocolloids Vol. 21 (2007), p.889–895.

Google Scholar

[41] J. Ose' s, I. Fernandez-Pan, M. Mendoza and J. I. Mate': Food Hydrocolloids Vol. 23 (2009), pp.125-131.

Google Scholar

[42] F. Tihminlioglu, I. Atik and B. Ozen: Journal of Food Engineering Vol. 96 (2006), p.342–347.

Google Scholar