Development of Cutting Force Model of Aluminum Nitride Ceramic Processed by Micro End Milling

Article Preview

Abstract:

Advanced ceramics are difficult to do machining due to brittle nature. High cutting forces will generate in the machining, which will affect the surface integrity of final product. Selection of proper machining parameters is important to obtain less cutting force. The present work deals with the study and development of a cutting force prediction model in end milling operation of Aluminum Nitride ceramic. The cutting force equation developed using Response Surface Methodology (RSM) to analyze the effect of Spindle speed, feed rate and axial depth of cut. The cutting tests were carried under dry condition using two flute square end micro grain carbide end mills.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-229

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jin, Hai-yun, Wen Wang, Ji-qiang Gao, Guan-jun Qiao, and Zhi-hao Jin. Materials Letters 60., Study of machinable AlN/BN ceramic composites, 2006: 190-193.

DOI: 10.1016/j.matlet.2005.08.029

Google Scholar

[2] Du, Xueli, Mingli Qin, Abdur Rauf, Zhihao Yuan, Baohe Yang, and Xuanhui Qu. Structure and properties of AlN ceramics prepared with spark plasma sintering. " Materials Science and Engineering A 496, 2008: 269-272.

DOI: 10.1016/j.msea.2008.05.027

Google Scholar

[3] Katahira, K., H. Ohmori, Y. Uehara, and M. Azuma. ELID grinding characteristics and surface modifying effects of aluminum nitride (AlN) ceramic, International Journal of Machine Tools & Manufacture 45 2005: 891-896.

DOI: 10.1016/j.ijmachtools.2004.10.017

Google Scholar

[4] Inasaki, Grinding of hard and brittle materials, Annals of CIRP 36 (2) 1987, 463–471.

DOI: 10.1016/s0007-8506(07)60748-3

Google Scholar

[5] S. Malkin, T.W. Hwang, Grinding mechanisms for ceramics, Annals of CIRP 45 (2) 1996, 569–580.

DOI: 10.1016/s0007-8506(07)60511-3

Google Scholar

[6] K. Li, W. Liao, Surface/subsurface damage and the fracture strength of ground ceramics, Journal of Materials Processing Technology 57, 1996, 207–220.

DOI: 10.1016/0924-0136(95)02090-x

Google Scholar

[7] S. Jahanmir, H.H.K. Xu, L.K. Ives, Mechanisms of material removal in abrasive machining of ceramics, Machining of Ceramics and Composites, Marcel Dekker, New York, 1999, p.11–84.

Google Scholar

[8] I. Marinescu, B. Rowe, L. Yin, H.G. Wobker, Abrasive processes, Handbook of Ceramics Grinding and Polishing, Noyes Publications, Park Ridge, New Jersey, 2000, p.94–189.

DOI: 10.1016/b978-081551424-4.50005-6

Google Scholar

[9] Raj, R., Fundamental research in structural ceramics for service near 2000. J. Am. Ceram. Soc., 1993, 76, 2147–2174.

Google Scholar

[10] I.P. Tursely, A. Jawaid, I.R. Pasbhy. Reciew: Various methods of machining advanced ceramics materials, Journal of materials processing technology, 42, 1994, 377-390.

DOI: 10.1016/0924-0136(94)90144-9

Google Scholar

[11] J.E. Mayar Jr., G.P. Fang, Diamond grinding of silicon nitride, NIST S.P. 647, 1993, 205–222.

Google Scholar

[12] J.E. Mayer Jr., G.P. Fang, Effect of grinding parameters on surface finish of ground ceramics, Annals of the CIRP 44 (1), 1995, 279–282.

DOI: 10.1016/s0007-8506(07)62325-7

Google Scholar

[13] Takacs. M, Vero. B, Meszaros. I, Micro milling of metallic materials, Journal of Materials Processing Technology 138, 2003, 152-155.

Google Scholar

[14] Rahaman. M, Senthil Kumar. A, Prakash J.R. S, Micro milling of pure Copper, Journal of Materials Processing Technology 116, 2001, 39-43.

DOI: 10.1016/s0924-0136(01)00848-2

Google Scholar

[15] Sinan Filiz, Caroline. M Conely, Mathew. B Wasserman, O Burak Ozdoganlar, An experimental investigation of micro- machinability of Copper 101 using tungsten carbide micro-end mills, International Journal of Machine Tools and Manufacture 47(2007).

DOI: 10.1016/j.ijmachtools.2006.09.024

Google Scholar

[16] Wang. W, Kweon.S. H, Yang.S. H, A study on roughness of Micro end milled surface produced by miniature machine tool, Journal of Processing Technology 162-163(2005) 702-708.

DOI: 10.1016/j.jmatprotec.2005.02.141

Google Scholar

[17] Alauddin. M, EI Baradie.M. A, Hashmi M.S. J, Modelling of cutting force in end milling Inconel 718, Journal of Material Processing Technology 58(1996) 100-108.

DOI: 10.1016/0924-0136(95)02113-2

Google Scholar

[18] Alauddin. M, EI Baradie.M. A, Hashmi M.S. J, Cutting forces in the end milling Inconel 718, Journal of Material Processing Technology 77(1998) 153-159.

DOI: 10.1016/s0924-0136(97)00412-3

Google Scholar

[19] Abou- EI-Hossein.K. A, Kadirgama. K, Hamdi. M, Benyounis.K. Y, Prediction of cutting force in end milling operation of modified AISI P20 tool steel, Journal of Materials Processing Technology 182(2007) 241-247.

DOI: 10.1016/j.jmatprotec.2006.07.037

Google Scholar

[20] Bao.W. Y, Tansel.I. N, Modeling micro end milling operations. Part 1: analytical cutting force model, International Journal of Machine tools & Manufacture 40(2000) 2155-2173.

DOI: 10.1016/s0890-6955(00)00054-7

Google Scholar

[21] Chee Keong Ng, Shreyes Melkote. NW. Y, Rahman. M, Senthil Kumar, Experimental study of micro-and nano-scale cutting of aluminum 7075-T6, International Journal of Machine tools & Manufacture 46(2006) 929-936.

DOI: 10.1016/j.ijmachtools.2005.08.004

Google Scholar

[22] Kang.I. S, Kim.J. S, Kim.J. H, Kang.M. C, Seo.Y. W, A mechanistic model of cutting force in the micro end milling process, Journal of Materials Processing Technology 187-188(2007) 250-255.

DOI: 10.1016/j.jmatprotec.2006.11.155

Google Scholar

[23] Newby. G, Venkatachalam. S, Liang.S. Y, Empirical analysis of cutting force constants in micro-end-milling operations, Journal of Materials Processing Technology 192-193(2007) 41-47.

DOI: 10.1016/j.jmatprotec.2007.04.026

Google Scholar