Characterization of Squeeze Cast Mg Alloy AM50 Containing Ca Addition

Article Preview

Abstract:

Metallographic analyses on microstructure of squeeze cast magnesium alloy AM50 with different levels of calcium addition are performed via optical microscopy (OM), and scanning electron microscopy (SEM). The OM results show the calcium has a grain refining effect on the base alloy AM50 with the level of Ca addition up to 2 wt.%. As the Ca content further increases, its grain refining effect becomes limited. The SEM observation reveals the addition of 2 wt.% Ca to the AM50 alloy leads to the formation of a continuous network of eutectic phases along grain boundaries while the discontinuous divorced secondary eutectic β-Mg12Al17 is present in the microstructure of AM50 containing also the primary α-Mg, and Mn-Al intermetallic particles. The elemental mapping by the energy dispersive spectroscopy (EDS) indicates the presence of the major alloying elements of Al and Ca along grain boundaries in the squeeze cast AM50 alloy with Ca addition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-18

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Avedesian, H. Baker, Magnesium and magnesium alloys, ASM International, Mater. Park, OH, USA, (1999), pp.12-25.

Google Scholar

[2] A. I. Taub, Reducing Weight for transportation applications: technology challenges, Magnesium Technology 2015, 144th Annual Meeting & Exhibition, March 15-19, 2015, Orlando, United States, (2015), p.3.

DOI: 10.1002/9781119093428.ch1

Google Scholar

[3] H. Hu, A. Yu, N. Li, J. E. Allison, Potential magnesium alloys for high temperature die cast automotive applications: a review, Mater. Manuf. Proc. 18(5) (2003) 687-717.

DOI: 10.1081/amp-120024970

Google Scholar

[4] K. Y. Sohn, W. Jones, J. J. Berkmortel, H. Hu, J. E. Allison, Creep and bolt load retention behavior of die cast magnesium alloys for high temperature applications: part 2 of 2, SAE 2000 World Congress Detroit, Michgan, March 6-9, 2000, 2000-01-1120.

DOI: 10.4271/2000-01-1120

Google Scholar

[5] K. Y. Sohn, W. Jones, J. E. Allison, The effect of calcium on creep and bolt load retention behavior of die-cast AM50 alloy, Magnesium Technology 2000; Nashville, TN; USA; 12-16 Mar. (2000), pp.271-278.

DOI: 10.1002/9781118808962.ch37

Google Scholar

[6] B. R. Powell, A. A. Luo, V. Rezhets, J. J. Bommarito, B. L. Tiwari, Development of creep-resistant magnesium alloys for powertrain applications: Part 1 of 2, SAE Transactions: J. Mater. Manuf. (USA) 110 (2001) 406-413.

DOI: 10.4271/2001-01-0422

Google Scholar

[7] A. A. Luo, M. P. Balogh, and B. R. Powell, Tensile creep and microstructure of magnesium-aluminum-calcium based alloys for powertrain applications: part 2 of 2, SAE Transactions: J. Mater. Manuf. (USA), 110 (2001) 414-422.

DOI: 10.4271/2001-01-0423

Google Scholar

[8] J. J. Berkmortel, H. Hu, J. E. Kearns, J. E. Allison, Die Castability assessment of magnesium alloys for high temperature applications: Part 1 of 2, SAE Paper #2000-01-0119, Soc. Automot. Eng. Detroit, MI, (2000).

DOI: 10.4271/2000-01-1119

Google Scholar

[9] M. Masoumi, H. Hu, Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg-Al-Ca alloy, Mater. Sci. Eng. A. 528(10-11) (2011) 3589-3593.

DOI: 10.1016/j.msea.2011.01.032

Google Scholar

[10] R. M. Wang, A. Eliezer, E. M. Gutman, An investigation on the microstructure of an AM50 magnesium alloy, Mater. Sci. Eng. A. 355, 1-2, 25 Aug. (2003) 201-207.

DOI: 10.1016/s0921-5093(03)00065-0

Google Scholar