Design and Analysis of Compound Multilayer Metamaterial Filter in THz Region

Article Preview

Abstract:

A periodic microstructure with dielectric and metal layers is proposed to obtain a bandpass filter. The multilayer microstructure is compounded of ring cross slot and cross slot. The center frequency of the filter is 0.338THz with a 3dB bandwidth of 75.62GHz. The maximum insertion loss in the pass band reaches 0.60dB. The bandedge transitions of the rejection bands are 232dB/THz and 176dB/THz, respectively. Furthermore, the physical mechanism of near field distribution and the influence of two factors (the number of metal layer and dielectric layer) on the passband have been studied. Meanwhile, the frequency response is analyzed for different incident angles and polarizations. The frequency response characteristic is insensitive to the polarization, and a good performance for incident angle of the transmission is obtained. It can be applied to THz atmospheric communication system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-299

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Horestani, W. Withayachumnankul, A. Chahadih, et al. Metamaterial-inspired bandpass filters for terahertz surface waves on Goubau lines. IEEE Trans. THz Sci. Technol. 3(6) (2013) 851–858.

DOI: 10.1109/tthz.2013.2285556

Google Scholar

[2] Z. Li, Y. Ma, R. Huang, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express. 19(19) (2011) 8912-8919.

DOI: 10.1364/oe.19.008912

Google Scholar

[3] M. Zhong, Y. H. Ye. Numerical demonstration of compound structure broad pass-band optical metamaterial filter. Appl. Phys. A, 119(2) (2015) 639-645.

DOI: 10.1007/s00339-015-9006-6

Google Scholar

[4] H. Tao, N. I. Landy, C. M. Bingham, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express. 16(10) (2008) 7181–7188.

DOI: 10.1364/oe.16.007181

Google Scholar

[5] R. Alaee, M. Farhat, C. Rockstuhl, et al. A perfect absorber made of a grapheme micro-ribbon metamaterial. Opt. Express. 20(27) (2012) 28017-28024.

DOI: 10.1364/oe.20.028017

Google Scholar

[6] X. L. Liu, T. Starr, A. F. Starr. Phys. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Rev. Lett. 104(20) (2010) 207403-207407.

DOI: 10.1103/physrevlett.104.207403

Google Scholar

[7] V. Sanphuang, W. G. Yeo. THz Transparent Metamaterials for Enhanced Spectroscopic and Imaging Measurements. IEEE Trans. THz Sci. Technol. 5(1) (2015) 117-123.

DOI: 10.1109/tthz.2014.2362659

Google Scholar

[8] H. T. Chen, W. J. Padilla, M. J. Cich, et al. A metamaterial solid-state terahertz phase modulator. Photonics. 3(3) (2009) 148–151.

DOI: 10.1038/nphoton.2009.3

Google Scholar

[9] D. Schuring, J. J. Mock, B. J. Justice, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314(5801) (2006) 977-981.

DOI: 10.1126/science.1133628

Google Scholar

[10] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science. 312(5781) (2006) 1780–1782.

DOI: 10.1126/science.1125907

Google Scholar

[11] N. Fang, H. Lee. C. Sun, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science. 308(5721) (2005) 534-537.

DOI: 10.1126/science.1108759

Google Scholar

[12] H. T. Chen, J. F. O'Hara, A. J. Taylor. Complementary planar terahertz metamaterials. Opt. Express. 15(3) (2007) 1084-1095.

Google Scholar

[13] L. J. Liang, B. B. Jin, J. Wu, et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Appl. Phys. B. 113 (2013) 285-290.

DOI: 10.1007/s00340-013-5470-x

Google Scholar

[14] X. Chen, W. H. Fan. A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Mater. Res. Express. 2(5) (2015) 1-8.

DOI: 10.1088/2053-1591/2/5/055801

Google Scholar

[15] A. Ebrahimi, S. Nirantar. Second-Order Terahertz Bandpass Frequency Selective Surface With Miniaturized Elements. IEEE Trans. THz Sci. Technol. 5(5) (2015) 761-769.

DOI: 10.1109/tthz.2015.2452813

Google Scholar

[16] X. Li, L. Yang, C. Hu, et al. Tunable bandwidth of band-stop filter by metamaterials cell coupling in optical frequency. Opt. Express, 19(6) (2011) 5283-5289.

DOI: 10.1364/oe.19.005283

Google Scholar

[17] N. R. Han, Z. C. Chen, C. S. Lim, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express, 19(8) (2011) 6990-6998.

DOI: 10.1364/oe.19.006990

Google Scholar

[18] F. Lan, Z. Q. Yang, L. M. Qi. Zongjun Shi. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt. Lett. 39(7) (2014) 1709-1712.

DOI: 10.1364/ol.39.001709

Google Scholar

[19] T. Schneider, A. Wiatrek. Link Budget Analysis for Terahertz Fixed Wireless Links. IEEE Trans. THz Sci. Technol. 2(2) (2012) 250-256.

DOI: 10.1109/tthz.2011.2182118

Google Scholar

[20] B. Han, B. Dong, J. Nan, et al. Tunable bandwidth of pass-band metamaterial filter based on coupling of localized surface plasmon resonance. Opt. Mater, 50 (2015) 162-166.

DOI: 10.1016/j.optmat.2015.10.016

Google Scholar

[21] M. Zhong, G. M. Han. J. Tunable broad stop-band filter based on multilayer metamaterials in the THz regime. Infrared Milim. Waves. 35(1) (2016) 11-14.

Google Scholar

[22] Z. Y. Li, Y. J. Ding. Broadband stopband filter for terahertz wave based on multi-layer metamaterial microstructure. Lasers and Electro-Optics. (2012).

DOI: 10.1364/cleo_at.2012.jw2a.43

Google Scholar