[1]
A. Horestani, W. Withayachumnankul, A. Chahadih, et al. Metamaterial-inspired bandpass filters for terahertz surface waves on Goubau lines. IEEE Trans. THz Sci. Technol. 3(6) (2013) 851–858.
DOI: 10.1109/tthz.2013.2285556
Google Scholar
[2]
Z. Li, Y. Ma, R. Huang, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express. 19(19) (2011) 8912-8919.
DOI: 10.1364/oe.19.008912
Google Scholar
[3]
M. Zhong, Y. H. Ye. Numerical demonstration of compound structure broad pass-band optical metamaterial filter. Appl. Phys. A, 119(2) (2015) 639-645.
DOI: 10.1007/s00339-015-9006-6
Google Scholar
[4]
H. Tao, N. I. Landy, C. M. Bingham, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express. 16(10) (2008) 7181–7188.
DOI: 10.1364/oe.16.007181
Google Scholar
[5]
R. Alaee, M. Farhat, C. Rockstuhl, et al. A perfect absorber made of a grapheme micro-ribbon metamaterial. Opt. Express. 20(27) (2012) 28017-28024.
DOI: 10.1364/oe.20.028017
Google Scholar
[6]
X. L. Liu, T. Starr, A. F. Starr. Phys. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Rev. Lett. 104(20) (2010) 207403-207407.
DOI: 10.1103/physrevlett.104.207403
Google Scholar
[7]
V. Sanphuang, W. G. Yeo. THz Transparent Metamaterials for Enhanced Spectroscopic and Imaging Measurements. IEEE Trans. THz Sci. Technol. 5(1) (2015) 117-123.
DOI: 10.1109/tthz.2014.2362659
Google Scholar
[8]
H. T. Chen, W. J. Padilla, M. J. Cich, et al. A metamaterial solid-state terahertz phase modulator. Photonics. 3(3) (2009) 148–151.
DOI: 10.1038/nphoton.2009.3
Google Scholar
[9]
D. Schuring, J. J. Mock, B. J. Justice, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314(5801) (2006) 977-981.
DOI: 10.1126/science.1133628
Google Scholar
[10]
J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science. 312(5781) (2006) 1780–1782.
DOI: 10.1126/science.1125907
Google Scholar
[11]
N. Fang, H. Lee. C. Sun, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science. 308(5721) (2005) 534-537.
DOI: 10.1126/science.1108759
Google Scholar
[12]
H. T. Chen, J. F. O'Hara, A. J. Taylor. Complementary planar terahertz metamaterials. Opt. Express. 15(3) (2007) 1084-1095.
Google Scholar
[13]
L. J. Liang, B. B. Jin, J. Wu, et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Appl. Phys. B. 113 (2013) 285-290.
DOI: 10.1007/s00340-013-5470-x
Google Scholar
[14]
X. Chen, W. H. Fan. A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Mater. Res. Express. 2(5) (2015) 1-8.
DOI: 10.1088/2053-1591/2/5/055801
Google Scholar
[15]
A. Ebrahimi, S. Nirantar. Second-Order Terahertz Bandpass Frequency Selective Surface With Miniaturized Elements. IEEE Trans. THz Sci. Technol. 5(5) (2015) 761-769.
DOI: 10.1109/tthz.2015.2452813
Google Scholar
[16]
X. Li, L. Yang, C. Hu, et al. Tunable bandwidth of band-stop filter by metamaterials cell coupling in optical frequency. Opt. Express, 19(6) (2011) 5283-5289.
DOI: 10.1364/oe.19.005283
Google Scholar
[17]
N. R. Han, Z. C. Chen, C. S. Lim, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express, 19(8) (2011) 6990-6998.
DOI: 10.1364/oe.19.006990
Google Scholar
[18]
F. Lan, Z. Q. Yang, L. M. Qi. Zongjun Shi. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt. Lett. 39(7) (2014) 1709-1712.
DOI: 10.1364/ol.39.001709
Google Scholar
[19]
T. Schneider, A. Wiatrek. Link Budget Analysis for Terahertz Fixed Wireless Links. IEEE Trans. THz Sci. Technol. 2(2) (2012) 250-256.
DOI: 10.1109/tthz.2011.2182118
Google Scholar
[20]
B. Han, B. Dong, J. Nan, et al. Tunable bandwidth of pass-band metamaterial filter based on coupling of localized surface plasmon resonance. Opt. Mater, 50 (2015) 162-166.
DOI: 10.1016/j.optmat.2015.10.016
Google Scholar
[21]
M. Zhong, G. M. Han. J. Tunable broad stop-band filter based on multilayer metamaterials in the THz regime. Infrared Milim. Waves. 35(1) (2016) 11-14.
Google Scholar
[22]
Z. Y. Li, Y. J. Ding. Broadband stopband filter for terahertz wave based on multi-layer metamaterial microstructure. Lasers and Electro-Optics. (2012).
DOI: 10.1364/cleo_at.2012.jw2a.43
Google Scholar