High Photocatalytic Activity of Oliver-Like BiVO4 for Rhodamine B Degradation under Visible Light Irradiation

Article Preview

Abstract:

We report the facial synthesis of BiVO4 crystals with different morphologies by the solvothermal and hydrothermal process. The phase structure and morphology as-synthesized samples were characterized by XRD, FE-SEM, and UV-vis DRS spectroscopy. We also investigated the photocatalytic activity of BiVO4 for the decomposition of rhodamine B (RhB) under visible light irradiation. The results showed that oliver-like BiVO4 was obtained when using the mixed solvent of ethylene glycol and water while starflower-like BiVO4 was obtained using the mixed solvent of ethylene glycol monomethyl ether and water. The hydrothermal evolution process the BiVO4 product with a rod-like morphology. Oliver-like BiVO4 with pure monoclinic scheelite phase and high specific surface area exhibits efficient photodegradation of RhB (k = 7.82x10-3 min-1).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-56

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, Review: Bismuth complexes: synthesis and applications in biomedicine, J. Coord. Chem. 68 (2015) 379–397.

DOI: 10.1080/00958972.2014.999672

Google Scholar

[2] Y. Z. Wang, W. Wang, H. Y. Mao, Y. H. Lu, J. G. Lu, J. Y. Huang, Z. Z. Ye, B. Lu, Electrostatic Self-Assembly of BiVO4-Reduced Graphene Oxide Nanocomposites for Highly Efficient Visible Light Photocatalytic Activities, ACS Appl. Mater. Interfaces. 6 (2014).

DOI: 10.1021/am502700p

Google Scholar

[3] L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms, Environ. Sci. Nano. 1 (2014) 90.

DOI: 10.1039/c3en00098b

Google Scholar

[4] S. Tokunaga, H. Kato, a. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater. 13 (2001) 4624–4628.

DOI: 10.1021/cm0103390

Google Scholar

[5] B. I. Lee, R. K. Gupta, C. M. Whang, Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0. 8Sr0. 2CrO3−δ, Mater. Res. Bull. 43 (2008) 207–221.

DOI: 10.1016/j.materresbull.2007.10.007

Google Scholar

[6] J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem. 18 (1988) 259–341.

DOI: 10.1016/0079-6786(88)90005-2

Google Scholar

[7] G. Li, Y. Ding, Y. Zhang, Z. Lu, H. Sun, R. Chen, Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances, J. Colloid Interface Sci. 363 (2011) 497–503.

DOI: 10.1016/j.jcis.2011.07.090

Google Scholar

[8] X. Liang, S. Kuang, Y. Li, Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles, J. Mater. Res. 26 (2011) 1168–1173.

DOI: 10.1557/jmr.2011.36

Google Scholar

[9] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Lett. 53 (1998) 229–230.

Google Scholar

[10] X. Lin, L. Yu, L. Yan, H. Li, Y. Yan, C. Liu, H. Zhai, Visible light photocatalytic activity of BiVO4 particles with different morphologies, Solid State Sci. 32 (2014) 61–66.

DOI: 10.1016/j.solidstatesciences.2014.03.018

Google Scholar

[11] C. Fu, G. Li, M. Zhao, L. Yang, J. Zheng, L. Li, Solvent-driven room-temperature synthesis of nanoparticles BiPO4: Eu3+., Inorg. Chem. 51 (2012) 5869–5880.

DOI: 10.1021/ic300465r

Google Scholar

[12] Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. Wang, Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries, Chemistry (Easton). 14 (2008) 1601–1606.

DOI: 10.1002/chem.200701053

Google Scholar

[13] G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties, Ceram. Int. 40 (2014) 9541–9547.

DOI: 10.1016/j.ceramint.2014.02.028

Google Scholar

[14] L. Chen, J. Wang, D. Meng, Y. Xing, C. Wang, F. Li, Y. Wang, X. Wu, Enhanced photocatalytic activity of hierarchically structured BiVO4 oriented along {040} facets with different morphologies, Mater. Lett. 147 (2015) 1–3.

DOI: 10.1016/j.matlet.2015.02.021

Google Scholar

[15] L. Zhang, J. Long, W. Pan, S. Zhou, J. Zhu, Y. Zhao, X. Wang, G. Cao, Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis, Mater. Chem. Phys. 136 (2012) 897–902.

DOI: 10.1016/j.matchemphys.2012.08.016

Google Scholar

[16] Y. Sun, C. Wu, R. Long, Y. Cui, S. Zhang, Y. Xie, Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chem. Commun. (Camb). (2009) 4542–4544.

DOI: 10.1039/b907406f

Google Scholar