Preparation and Characterization of Advanced PtRu/Ti0.7Mo0.7O2 Catalysts for Direct Methanol Fuel Cells

Article Preview

Abstract:

We report the new strategy by investigating the novel Ti0.7Mo0.3O2 material can just as easily be used as a conductive support for PtRu for DMFCs to prevent not only the carbon corrosion but also improved activity of catalyst due to some functional advantages of novel Ti0.7Mo0.3O2 support. The Ti0.7Mo0.3O2 nanoparticle have good crystallinity with well-defined fringes corresponding to the 3.45 Å spacing value of the {101} plane of anatase TiO2, which were good according to the XRD pattern. The BET surface area measurements showed that the Ti0.7Mo0.3O2 possessed 125 m2 g-1 Fig. 3 shows the TEM measurement of Ti0.7Mo0.3O2 nanoparticle and Pt/Ti0.7Mo0.3O2, it can be observed that spherical PtRu alloy particles with an average particle size of 2-4 nm were uniformly anchored on the surface of Ti0.7Mo0.3O2 support. More importantly, we found that there has a strong metal support interaction (SMSI) between the PtRu noble metal and the Ti0.7Mo0.3O2 support material - resulting in facile electron donation from the Ti0.7Mo0.3O2 support to PtRu metal with an ultimate drastic decrease in the d-band vacancy of Pt. Thus, the unique structural features of the Ti0.7Mo0.3O2 support and the PtRu/Ti0.7Mo0.3O2 catalyst appear to provide a suitable combination favoring that promise for the high performance of methanol oxidation, CO-tolerance in DMFCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-63

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. P. Lee, Z. M. Peng, W. Chen, S. Chen, H. Yang, and Y. Xia. Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes, ACS Nano. 2(10) (2008) 2167–2173.

DOI: 10.1021/nn800458p

Google Scholar

[2] T. G. Hyeon, S. J. Han, Y. E. Sung, K. W. Park and Y. W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. Int. Ed. 42 (2003) 4352-4356.

DOI: 10.1002/anie.200250856

Google Scholar

[3] R. Q. Yu, L. W. Chen, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. Chan, G. Q. Xu, T. S. Andyhor, Platinum Deposition on Carbon Nanotubes via Chemical Modification, Chem. Mater. 10 (1998) 718-722.

DOI: 10.1021/cm970364z

Google Scholar

[4] S. Liao, K. A. Holmes, H. Taprailis, V. I. Birss, High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol, J. Am. Chem. Soc. 128 (2006) 3504.

DOI: 10.1021/ja0578653

Google Scholar

[5] T. Y. Jeon, K. S. Lee, S. J. Yoo, Y. H. Cho, S. H. Kang and Y. E. Sung, Effect of Surface Segregation on the Methanol Oxidation Reaction in Carbon-Supported Pt−Ru Alloy Nanoparticles, Langmuir, 26 (2010) 9123-9129.

DOI: 10.1021/la9049154

Google Scholar

[6] S. Yamazaki, M. Yao, Z. Siroma, T. Ioroi, and K. Yasuda. New-Concept CO-Tolerant Anode Catalysts Using a Rh Porphyrin-Deposited PtRu/C, J. Phys. Chem. C, 114 (2010) 21856-21860.

DOI: 10.1021/jp107887x

Google Scholar

[7] S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J. L. Hutchison, M. Delichatsios, and S. Ukleja, Rapid Microwave Synthesis of CO Tolerant Reduced Graphene Oxide-Supported Platinum Electrocatalysts for Oxidation of Methanol, J. Phys. Chem. C, 114 (2010).

DOI: 10.1021/jp107872z

Google Scholar

[8] E. Antolini, E. R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts, Solid State Ionics. 180 (2009) 746–763.

DOI: 10.1016/j.ssi.2009.03.007

Google Scholar

[9] C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner, F. J. DiSalvo, Sol−Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0. 7W0. 3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells, J. Am. Chem. Soc. 132 (2010).

DOI: 10.1021/ja1074163

Google Scholar

[10] S. Y. Huang, P. Ganesan, S. Park, B. N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications, J. Am. Chem. Soc. 131 (2009) 13898–13899.

DOI: 10.1021/ja904810h

Google Scholar

[11] S. E. Jang, H. Kim, Effect of Water Electrolysis Catalysts on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells, J. Am. Chem. Soc. 132 (2010) 14700-14701.

DOI: 10.1021/ja104672n

Google Scholar

[12] K. A. N. Quoc, T. T. Huynh, V. T. T. Ho, Preparation and characterization of indium doped tin oxide (ITO) via a non-aqueous sol-gel, Molecul. Cryst. Liq. Cryst. 635 (2016) 1-8.

DOI: 10.1080/15421406.2016.1200920

Google Scholar

[13] K. A. N. Quoc, V. T. T. Ho, Preparation and Characterization of Indium Doped Tin Oxide (ITO) via a Solvothermal Method, J. Envir. Sci. Eng. B 5: 7 (2016) 379-384.

DOI: 10.17265/2162-5263/2016.08.001

Google Scholar

[14] K. A. N. Quoc, T. T. Huynh, V. T. T. Ho, Preparation and Characterization of Fe/Sio2 Nanoparticles Composite via Sol-Gel and Chemical Reduction Method, Int. J. Adv. Eng. Res. Sci. 3 (2016) 45-49.

Google Scholar

[15] V. T. T. Ho, Synthesis and Characterization of PtRuMo/C Ternary Nanoelectrocatalysts for Direct Methanol Fuel Cells, Int. J. Adv. Eng. Res. Sci. 3(5) (2016) 110-114.

Google Scholar

[16] V. T. T. Ho, T. P. Dinh, Advanced nanostructure Ti0. 7In0. 3O2 support enhances electron transfer to Pt: Used as high performance catalyst for oxygen reduction reaction, Molecul. Cryst. Liq. Cryst. 635 (2016) 25-31.

DOI: 10.1080/15421406.2016.1200916

Google Scholar

[17] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions; NACE International: Houston, (1974).

Google Scholar

[18] M. Aryanpour, R. Hoffmann, F. J. DiSalvo, Tungsten-Doped Titanium Dioxide in the Rutile Structure: Theoretical Considerations, Chem. Mater. 21 (2009) 1627-1635.

DOI: 10.1021/cm900329k

Google Scholar

[19] H. Zhang, Y. Wang, E. R. Fachini, C. R. Cabrera, Electrochemically Codeposited Platinum/Molybdenum Oxide Electrode for Catalytic Oxidation of Methanol in Acid Solution, Electrochem. Solid-State Lett. 2 (1999) 437-439.

DOI: 10.1149/1.1390863

Google Scholar

[20] G. Chen, Zh. Wang, D. Xia, Electrochemically codeposited palladium/molybdenum oxide electrode for electrocatalytic reductive dechlorination of 4-chlorophenol, Electrochem. Commun. 6(3) (2004) 268–272.

DOI: 10.1016/j.elecom.2003.12.011

Google Scholar

[21] A. Chen, P. Holt-Hindle. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications, Chem. Rev. 110 (2010) 3767–3804.

DOI: 10.1021/cr9003902

Google Scholar

[22] F. J. Lai, L. S. Sarma, H. L. Chou, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy, J. Phys. Chem. C, 113 (2009).

DOI: 10.1021/jp903105e

Google Scholar

[23] C. C. Shih, J. R. Chang, Pt/C stabilization for catalytic wet-air oxidation: Use of grafted TiO, J. Catal. 240 (2006) 137-150.

DOI: 10.1016/j.jcat.2006.03.019

Google Scholar