Synthesis of Molybdenum Trioxide: Structure Properties and Sensing Film Preparation

Article Preview

Abstract:

In this research, molybdenum trioxide (MoO3) nanoflakes were synthesized by a simple and low cost hydrothermal method for gas sensing application. Sodium molybdate (Na2MoO4·2H2O) was used as the precursor. The powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). After hydrothermal process, the powders were showed amorphous phase. However, after annealing process the MoO3 was observed as particles having the orthorhombic phase. The average particle sizes of MoO3 nanoflakes were about 80 nm. The morphologies, cross section and elemental compositions of sensing films were analyzed by SEM and EDS line-scan mode analysis. From the SEM image revealed nanoflakes morphologies of MoO3 and the thickness of MoO3 sensing film was about 10 mm. The obtained sensing film can be used as the sensing device to fabricate composited gas sensors for detection of some environmental hazardous gas (including ethanol, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen oxide, and ammonia) will report in the next research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.S. Kim, H.C. Kim, S.H. Hong, Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method, Nano. Res., 12 (2010) 1889-1896.

DOI: 10.1007/s11051-009-9751-6

Google Scholar

[2] K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sens. Actuators B., 77 (2001) 478-483.

DOI: 10.1016/s0925-4005(01)00738-9

Google Scholar

[3] X.L. Li, J.F. Liu, Y.D. Li, Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts, Appl. Phys. Lett., 81 (2002) 4832-4834.

DOI: 10.1063/1.1529307

Google Scholar

[4] G.R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.D. Grunwaldt, A. Baiker, One-step synthesis of submicrometer fibers of MoO3, Chem. Mater., 16 (2004) 1126-1134.

DOI: 10.1021/cm031057y

Google Scholar

[5] S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation, Chem. Mater., 16 (2006).

DOI: 10.1039/b607335b

Google Scholar

[6] D. Hanlon, C. Backes, T.M. Higgins, M. Hughes, A.O. Neill, K.P.N. McEvoy, G.S. Duesberg, B.M. Sanchez, H. Pettersson, V. Nicolosi, J.N. Coleman, Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors, Chem. Mater., 26 (2014).

DOI: 10.1021/cm500271u

Google Scholar

[7] K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarskib, R.B. Kaner, Synthesis of nanometre-thick MoO3 sheets, Nanoscale, 2 (2010) 429-433.

DOI: 10.1039/b9nr00320g

Google Scholar

[8] J.W. Gong, X.F. Wan, Hydrothermal synthesis of different nanostructure MoO3 sensing materials: application for transformer fault diagnosis, Mater. Tech., 30 (2015) 332-337.

DOI: 10.1179/1753555715y.0000000008

Google Scholar

[9] S. Yang, Z. Wang, Y. Hu, X. Luo, J. Lei, D. Zhou, L. Fei, Y. Wang, H. Gu, Highly responsive room-temperature hydrogen sensing of alpha-MoO3 nanoribbon membranes, ACS Appl. Mater. Interfaces, 7 (2015) 9247-9253.

DOI: 10.1021/acsami.5b01858

Google Scholar

[10] M. Liu, Q. Chen, X. Lu, L. Ge, L. Yin, R. Zhang, D. Chen, Hydrothermal synthesis and ethanol-sensing properties of MoO3 nanobelts, Key Eng. Mater., 575-576 (2013) 61-64.

DOI: 10.4028/www.scientific.net/kem.575-576.61

Google Scholar

[11] M.M.Y.A. Alsaif, S. Balendhran, M.R. Field, K. Latham, W. Wlodarski, J.Z. Ou, K. Kalantarzadeh, Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing, Sens. Actuators B, 192 (2014).

DOI: 10.1016/j.snb.2013.10.107

Google Scholar

[12] Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuan, A. Wang, Uniform Pt nanoparticles incorporated into reduced graphene oxides with MoO3 as advanced anode catalysts for methanol electro-oxidation, Electrochimica Acta, 198 (2016) 127-34.

DOI: 10.1016/j.electacta.2016.03.054

Google Scholar

[13] H.J. Kim, K.W. Seo, Y.J. Noh, S.I. Na, A. Sohn, D.W. Kim, Work function and interface control of amorphous IZO electrodes by MoO3 layer grading for organic solar cells, Sol. Energy Mater. Sol. Cells., 141 (2015) 194-202.

DOI: 10.1016/j.solmat.2015.05.036

Google Scholar

[14] M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications, Vacuum, 86 (2012).

DOI: 10.1016/j.vacuum.2011.12.002

Google Scholar

[15] R. Nadimicherla, W. Chen, X. Guo, Synthesis and characterization of α-MoO3 nanobelt composite positive electrode materials for lithium battery application, Mater. Res. Bull., 66 (2015) 140-146.

DOI: 10.1016/j.materresbull.2015.02.036

Google Scholar

[16] D. Mutschall, K. Holzner, E. Obermeier, Sputtered molybdenum oxide thin films for NH3 detection, Sens. Actuators B, 36 (1996) 320-324.

DOI: 10.1016/s0925-4005(97)80089-5

Google Scholar

[17] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sens. Actuators B, 78 (2001) 119-125.

DOI: 10.1016/s0925-4005(01)00801-2

Google Scholar

[18] S. Balakumar, R.A. Rakkesh, A.K. Prasad, S. Dash, A.K. Tyagi, Nanoplatelet structures of MoO3 for H2 gas sensors, IEEE, (2011) 514-517.

Google Scholar

[19] W. Zeng, H. Zhang, Y.Q. Li, W.G. Chen, Net-like MoO3 porous architectures: synthesis and their sensing properties, J. Mater. Sci. Mater. Electron, 25 (2014) 338-342.

DOI: 10.1007/s10854-013-1591-6

Google Scholar

[20] Y. Liu1, W. Zeng, Facile synthesis of 3D flower-like MoO3 and its gas sensor application, J. Mater. Sci. Mater. Electron, 17 (2016) 12996-13001.

DOI: 10.1007/s10854-016-5438-9

Google Scholar

[21] Y. Liu, P. Feng, Z. Wang, X. Jiao, F. Akhtar, Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates, Nature, 7 (2017) 1-12.

DOI: 10.1038/s41598-017-02025-3

Google Scholar