[1]
W.S. Kim, H.C. Kim, S.H. Hong, Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method, Nano. Res., 12 (2010) 1889-1896.
DOI: 10.1007/s11051-009-9751-6
Google Scholar
[2]
K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sens. Actuators B., 77 (2001) 478-483.
DOI: 10.1016/s0925-4005(01)00738-9
Google Scholar
[3]
X.L. Li, J.F. Liu, Y.D. Li, Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts, Appl. Phys. Lett., 81 (2002) 4832-4834.
DOI: 10.1063/1.1529307
Google Scholar
[4]
G.R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.D. Grunwaldt, A. Baiker, One-step synthesis of submicrometer fibers of MoO3, Chem. Mater., 16 (2004) 1126-1134.
DOI: 10.1021/cm031057y
Google Scholar
[5]
S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation, Chem. Mater., 16 (2006).
DOI: 10.1039/b607335b
Google Scholar
[6]
D. Hanlon, C. Backes, T.M. Higgins, M. Hughes, A.O. Neill, K.P.N. McEvoy, G.S. Duesberg, B.M. Sanchez, H. Pettersson, V. Nicolosi, J.N. Coleman, Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors, Chem. Mater., 26 (2014).
DOI: 10.1021/cm500271u
Google Scholar
[7]
K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarskib, R.B. Kaner, Synthesis of nanometre-thick MoO3 sheets, Nanoscale, 2 (2010) 429-433.
DOI: 10.1039/b9nr00320g
Google Scholar
[8]
J.W. Gong, X.F. Wan, Hydrothermal synthesis of different nanostructure MoO3 sensing materials: application for transformer fault diagnosis, Mater. Tech., 30 (2015) 332-337.
DOI: 10.1179/1753555715y.0000000008
Google Scholar
[9]
S. Yang, Z. Wang, Y. Hu, X. Luo, J. Lei, D. Zhou, L. Fei, Y. Wang, H. Gu, Highly responsive room-temperature hydrogen sensing of alpha-MoO3 nanoribbon membranes, ACS Appl. Mater. Interfaces, 7 (2015) 9247-9253.
DOI: 10.1021/acsami.5b01858
Google Scholar
[10]
M. Liu, Q. Chen, X. Lu, L. Ge, L. Yin, R. Zhang, D. Chen, Hydrothermal synthesis and ethanol-sensing properties of MoO3 nanobelts, Key Eng. Mater., 575-576 (2013) 61-64.
DOI: 10.4028/www.scientific.net/kem.575-576.61
Google Scholar
[11]
M.M.Y.A. Alsaif, S. Balendhran, M.R. Field, K. Latham, W. Wlodarski, J.Z. Ou, K. Kalantarzadeh, Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing, Sens. Actuators B, 192 (2014).
DOI: 10.1016/j.snb.2013.10.107
Google Scholar
[12]
Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuan, A. Wang, Uniform Pt nanoparticles incorporated into reduced graphene oxides with MoO3 as advanced anode catalysts for methanol electro-oxidation, Electrochimica Acta, 198 (2016) 127-34.
DOI: 10.1016/j.electacta.2016.03.054
Google Scholar
[13]
H.J. Kim, K.W. Seo, Y.J. Noh, S.I. Na, A. Sohn, D.W. Kim, Work function and interface control of amorphous IZO electrodes by MoO3 layer grading for organic solar cells, Sol. Energy Mater. Sol. Cells., 141 (2015) 194-202.
DOI: 10.1016/j.solmat.2015.05.036
Google Scholar
[14]
M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications, Vacuum, 86 (2012).
DOI: 10.1016/j.vacuum.2011.12.002
Google Scholar
[15]
R. Nadimicherla, W. Chen, X. Guo, Synthesis and characterization of α-MoO3 nanobelt composite positive electrode materials for lithium battery application, Mater. Res. Bull., 66 (2015) 140-146.
DOI: 10.1016/j.materresbull.2015.02.036
Google Scholar
[16]
D. Mutschall, K. Holzner, E. Obermeier, Sputtered molybdenum oxide thin films for NH3 detection, Sens. Actuators B, 36 (1996) 320-324.
DOI: 10.1016/s0925-4005(97)80089-5
Google Scholar
[17]
C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sens. Actuators B, 78 (2001) 119-125.
DOI: 10.1016/s0925-4005(01)00801-2
Google Scholar
[18]
S. Balakumar, R.A. Rakkesh, A.K. Prasad, S. Dash, A.K. Tyagi, Nanoplatelet structures of MoO3 for H2 gas sensors, IEEE, (2011) 514-517.
Google Scholar
[19]
W. Zeng, H. Zhang, Y.Q. Li, W.G. Chen, Net-like MoO3 porous architectures: synthesis and their sensing properties, J. Mater. Sci. Mater. Electron, 25 (2014) 338-342.
DOI: 10.1007/s10854-013-1591-6
Google Scholar
[20]
Y. Liu1, W. Zeng, Facile synthesis of 3D flower-like MoO3 and its gas sensor application, J. Mater. Sci. Mater. Electron, 17 (2016) 12996-13001.
DOI: 10.1007/s10854-016-5438-9
Google Scholar
[21]
Y. Liu, P. Feng, Z. Wang, X. Jiao, F. Akhtar, Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates, Nature, 7 (2017) 1-12.
DOI: 10.1038/s41598-017-02025-3
Google Scholar