[1]
T.W. Sederberg, J. ZHENG, A. BAKENOV, et al., T-splines and T-nurccs. ACM Transactions on Graphics, 2003. 22(3): 477-484.
DOI: 10.1145/882262.882295
Google Scholar
[2]
H. Hoppe, T. DeRose, T. Duchamp, et al. Piecewise smooth surface reconstruction. in Proceedings of the 21st annual conference on Computer graphics and interactive techniques. 1994: ACM Press.
DOI: 10.1145/192161.192233
Google Scholar
[3]
J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. in Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. 1998. Orlando, Florida, USA: ACM Press.
DOI: 10.1145/280814.280945
Google Scholar
[4]
W. Ma and N. Zhao, Smooth Multiple B-spline Surface Fitting with Catmull-Clark Subdivision Surfaces for Extraordinary Corner Patches. The Visual Computer, 2002. 18: 415-436.
DOI: 10.1007/s003710100159
Google Scholar
[5]
H. Lin, G. Wang, and C. Dong, Constructing Iterative Non-Uniform B-spline Curve and Surface to Fit Data Points. SCIENCE IN CHINA, Series F, 2004. 47: 315-331.
DOI: 10.1360/02yf0529
Google Scholar
[6]
T. Sederberg, D.L. Cardon, G.T. Finnigan, et al., T-spline Simplification and Local Refinement. ACM Transactions on Graphics, 2004. 23(3): 276-283.
DOI: 10.1145/1015706.1015715
Google Scholar
[7]
M. Desbrun, M. Meyer, and P. Alliez, Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum, 2002. 12(3): 209-218.
DOI: 10.1111/1467-8659.00580
Google Scholar
[8]
S. Yoshizawa, A. Belyaev, and H.P. Seidel. A Fast and Simple Stretch-Minimizing Mesh Parameterization. in Proceedings of the Shape Modeling International 2004 (SMI'04). 2004: IEEE Computer Society.
DOI: 10.1109/smi.2004.1314507
Google Scholar
[9]
W. Ma, X. Ma, S. -K. Tso, et al. Subdivision surface fitting from a dense triangle mesh. in Geometry Modeling Processing 2002. (2002).
DOI: 10.1109/gmap.2002.1027500
Google Scholar