[1]
Liu Wenting, Wang Zhi, Sui Fucheng.: Aircraft Life Monitoring Technique Guide[M]. Beijing: National Defence Industry Press, (2010) 215-244.
Google Scholar
[2]
Du Shanyi, Zhang Boming.: Status and Developments of Intelligentized Aircraft Structures[J]. Journal of Astronautics, 28(2007) 773-778.
Google Scholar
[3]
Yuan Shenfang.: Structural Health Monitoring and Damage Control[M]. Beijing: National Defence Industry Press, (2007).
Google Scholar
[4]
Yang J, Chang FK, Derriso M.: Design of A Hierarchical Health Monitoring System for Detection of Multilevel Damage in Bolted Thermal Protection Panels. Structural Health Monitoring, 2(2003) 115-122.
DOI: 10.1177/1475921703002002003
Google Scholar
[5]
Hunt S R, Hebden I G.: Validation of The Eurofighter Typhoon Structural Health and Usage Monitoring System [J]. Smart Materials and Structures, 10(2001) 497-503.
DOI: 10.1088/0964-1726/10/3/311
Google Scholar
[6]
Schweikhard K A, Richards W L, Theisen J, et. al.: Flight Demonstration of X-33 Vehicle Health Management System Components on The F/A-18 Systems Research Aircraft[R]. NASA/TM-2001-209037, (2001).
Google Scholar
[7]
Gordon B, Aaseng G.: Blueprint for An Integrated Vehicle Health Management System[C]/IEEE20th Digital Avionics Systems Conference, 1 (2001) 1-11.
DOI: 10.1109/dasc.2001.963350
Google Scholar
[8]
Paget C A, Atherton K J.: Damage Assessment In A Full Scale Aircraft Wing by Modified Acoustic Emission[C]/Proceedings of the 2nd European Workshop on Structural Health Monitoring. (2004).
Google Scholar
[9]
Challenge in Structural Health Monitoring of Large Aircraft Development[J]. Aeronautical Manufacturing Technology, 22(2009) 62-67.
Google Scholar
[10]
Hu Mingmin, Chen Jie, Tao Baoqi.: The Performance Test Research Of The Fatigue Life Gauge[J]. Aeronautics Journal, 15(1994) 336-339.
Google Scholar
[11]
Hu Mingmin, Chen Jie, Tao Baoqi.: A New Method Of Predicting Fatigue Life With The Fatigue Life Gauge[J]. Journal of Mechanical Strength, 16(1994) 9-11.
Google Scholar
[12]
Zhou Keyin, Xiong Ke et. al.: Study on Estimation of Fatigue Residual Life Span Based on Damage Measurement[J]. China Safety Science Journal, 14(2004) 110-112.
Google Scholar
[13]
Zhou Keyin, Hu Mingmin, Xiong Ke.: Study On The Method To Diagnose The Fatigue Status Of Structure Based On Fatigue Life Gage[J]. Physical Testing, 38(2002) 427-430.
Google Scholar
[14]
Wu Fuqiang, Yao Weixing.: A New Model of the Fatigue Life Curve of Materials[J]. China Mechanical Engineering, 19(2008) 1634-1637.
Google Scholar
[15]
Huang Pei-yan , Zhou Xu-ping, et. al.: Fatigue Lives of RC Beams Strengthened with Carbon Fiber Laminates Under Bending Loads[J]. Journal of South China University of Technology, 35(2007) 198-204.
DOI: 10.1299/jsmeatem.2007.6._os4-3-3-1
Google Scholar
[16]
Wu Fuqiang, Yao Weixing.: S-N Curve Model of Composite Laminate[J]. Journal of Mechanical Strength, 26(2004) 127-129.
Google Scholar
[17]
Yang J N.: A Stiffness Degradation Model for Graphite/Epoxy Laminate[J]. J. Comp. Mat, 24(1990) 753-796.
Google Scholar
[18]
Hanks.: Fatigue Life Prediction and Failure Mechanism of Composite Materials [J]. Advanced composite materials, 2(1992) 29-50.
Google Scholar
[19]
Feng Peide, Du Shanyi et. al.: Fatigue Residual Stiffness Degradation Model of Composite Laminates[J]. Acta Mechanica Solida Sinica, 24(2003) 46-52.
Google Scholar
[20]
Feng Peide, Li Haitao et. al.: Model for Prediction of Fatigue Residual Life of Composite Laminates[J]. Materials Science and Engineering, 20(2002) 41-43.
Google Scholar
[21]
Yang J N, Liu M D.: Residual Strength Degradation Model and Theory of Periodic Proof Tests for Graphite Lepoxy Laminates[J]. Journal of Composite Materials, 11(1977)176-203.
DOI: 10.1177/002199837701100205
Google Scholar
[22]
Sun G X, Feng Y S.: Model of Fatigue Life Reliability Analysis Based on Residual Strength Degradation Theory[J]. Journal of Mechanical Strength, 22(2000)129-133.
Google Scholar
[23]
Pan Yingxiong, Tong Xiaoyan, Li Bin.: Experimental research on Fatigue Behavior of Composites Using Energy Dissipation Methodology[J]. Structure and Environment Engineering, 36(2009) 51-56.
Google Scholar
[24]
Machmood M S.: Progressive Fatigue Damage Modeling of Composite Materials, Part I: modeling [J]. Journal of Composite Material, 34(2000) 1056-1080.
DOI: 10.1177/002199830003401301
Google Scholar
[25]
Dong Xingjian, LI Yazhi, Meng Guang.: Life Prediction Methodology for Composite Laminates[J]. Journal of Shanghai Jiaotong University, 38(2004) 1748-1752.
Google Scholar
[26]
Huang Zhiyuan, Li Yazhi, Guo Xiaobo.: Fatigue Life Prediction of Composite Laminates Incorporating 3D Stress Analysis[J]. Journal of Composite Materials, 27(2010) 173-178.
Google Scholar
[27]
LI Yazhi, Zhang Kaida, Zhang Boping.: A FRP Cumulative Damage Model and its Application on Fatigue Life Estimation[J]. Chinese Journal of Applied Mechanics, 20(2003).
Google Scholar
[28]
R. Ganesan. A Stochastic Cumulative Damage Model for The Fatigue Response of Laminated Composites[C]. ICCM-11, (1977) 145-156.
Google Scholar
[29]
Hany El Kadi, Yousef Al-Assaf.: Prediction of The Fatigue Life of Unidirectional Glass Fiber/Epoxy Composite Laminae Using Different Neural Network Paradigms. Composite Structures, (2002) 239-246.
DOI: 10.1016/s0263-8223(01)00152-0
Google Scholar
[30]
Zhang Boping, Li Yazhi, Zhang Kaida.: Application of Neural Networks to Composites Laminate Stiffness Degenerate[C] /The Fourteenth Session of The National Conference on Composite Materials, (2006).
Google Scholar
[31]
Su Yongzhen, Yuan Shenfang, Zhang Bingliang.: Impact Localization for Composite Based on Acoustic Emission and Neural Networks[J]. Transducer and Microsystem Technologies, 28(2009) 56-59.
Google Scholar
[32]
Wang Lei, Yuan Shenfang.: Application of Kohonen Self-Organizing Feature Network to Active Damage M onitoring Technique for Composites[J]. Materials Science and Engineering, 20(2002) 513-516.
Google Scholar
[33]
Peng Ge, Yuan Shenfang.: Research on Using Wavelet Neural Network to Recognize Damage in Composite Materials[J]. Astronautics Journal, 26(2005) 625-629.
Google Scholar
[34]
Xie Jianhong, Zhang Weigong.: Dynamic Wavelet Neural Network Method Applied to Predict Fatigue Residual Life of Composite Material[J]. Chinese Journal of Science Instrument, 25(2004) 740-742.
Google Scholar
[35]
Hany El Kadi, Yousef Al-Assaf.: Prediction of The Fatigue Life of Unidirectional Glass Fiber/Epoxy Composite Laminae Using Different Neural Network Paradigms. Composite Structures, 55(2002) 239-246.
DOI: 10.1016/s0263-8223(01)00152-0
Google Scholar
[36]
Zou Y, Tong L, Steven G.P.: Vibration-based Model-dependent Damage (Delamination)Identification and Health Monitoring for Composite Structures Review[J]. Journal of Sound of Vibration, 230(2000) 357-378.
DOI: 10.1006/jsvi.1999.2624
Google Scholar
[37]
Montalvao D, Maia N M, Ribeiro A M.: A Review of Vibration-based Structural Health Monitoring with Special Emphasis on Composite Materials[J]. The Shock and Vibration Digest, 38(2006) 295-324.
DOI: 10.1177/0583102406065898
Google Scholar
[38]
Boiler C.: Next Generation Structural Health Monitoring and Its Integration into Aircraft Design[J]. International Journal of System Science, 31(2000) 1333-1349.
DOI: 10.1080/00207720050197730
Google Scholar
[39]
IHN J B, Chang F K.: Detection and Monitoring of Hidden Fatigue Crack Growth Using A Built-in Piezoelectric Sensor/Actuator Network: I. Diagnostics [J]. Smart Materials and Structures, 13(2004) 609-620.
DOI: 10.1088/0964-1726/13/3/020
Google Scholar
[40]
Cao Jun, Yuan Shenfang et. al.: Real-time Structural Health Monitoring for Fatigue Crack Growth[J]. Piezoelectric and Acousto-optic, 30(2008) 776-778.
Google Scholar
[41]
Cai Jian, Yuan Shenfan et. al.: Experimental Study on Crack Growth Monitoring Based on Wave Packet Energy[J]. Journal of Southeast University, 39(2009) 478-483.
Google Scholar
[42]
Qiu Lei, Yuan Shenfang, et. al.: Development of Lamb Wave Based Active Structural Health Monitoring System[J]. Piezoelectric and Acousto-optic, 31(2009) 763-766.
Google Scholar
[43]
Li Dongsheng, Deng Nianchun, Zhou Zhi, et. al.: Fiber Bragg Grating Sensor Monitoring Techniques and Health Diagnosis of Arch Bridge Suspenders[J]. Journal of Optoelectronics·Laser, 18(2007) 81-84.
Google Scholar
[44]
Hideki Sekine, Shin-Etsu Fujimoto, Tomonaga Okabe, et. al.: Structural Health Monitoring of Cracked Aircraft Panels Repaired with Bonded Patches Using Fiber Bragg Grating Sensors[J]. Appl Compos Mater, 13(2006) 87-98.
DOI: 10.1007/s10443-006-9011-1
Google Scholar
[45]
OkabeY, Tsuji R, Takeda N.: Application of Chirped Fiber Bragggrating Sensors for Identification of Crack Locations in Composites[J]. Compos Part A: Appl Sci and Manuf, 35(2004) 59-65.
DOI: 10.1016/j.compositesa.2003.09.004
Google Scholar
[46]
Yamaguchi K, Oyaizu H, Johkaji J, et. al.: Acoustic Emission: Current Practice and Future Directions, Amer Soc Test master (1991), 1077, 123.
DOI: 10.1520/stp19089s
Google Scholar
[47]
Zilberstein V, Schlicker D, Walrath k, et. al.: MWM Eddy Current Sensors For Monitoring of Crack Initiation and Growth During Fatigue Tests and In Service [J]. International Journal of Fatigue, 23(2001) S477-S485.
DOI: 10.1016/s0142-1123(01)00154-2
Google Scholar
[48]
Wheatly G, Kollgaard J, et. al.: Comparative Vacuum Monitoring As An Alternative Means of Compliance, FAA/NASA/DOD Aging Aircraft Conference, September , (2003).
Google Scholar
[49]
Smart Coatings Crack Damage Detection System (ICMS) Technical Overview [M], Xi an: Xi'an Jiaotong University Press, (2009).
Google Scholar