Expressions for the G-Drazin Inverse of Additive Perturbed Elements

Article Preview

Abstract:

To study the properties of the generalized Drazin inverse in a Banach algebra, an explicit representation of the generalized Drazin inverse under the some conditions. Thus some results are generalized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-514

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.J. Murphy, C-Algebras and operator Theory, Academic Press, San Diego, (1990).

Google Scholar

[2] M.P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-524.

DOI: 10.2307/2308576

Google Scholar

[3] S.R. Caradus, Operator theory of generalized inverse, Queen's Papers in Pure and Appl. Math. 38, Queen's University, Kingston, Ontario, 1974, Science Press, New York, (2004).

Google Scholar

[4] C.F. King, A note on Drazin inverse, Pacific. J. Math. 70(1977), 383-390.

Google Scholar

[5] D.C. Lay, Spectral properties of generalized inverses of linear operators, SIAM J. Appl. Math. 29(1975), 103-109.

DOI: 10.1137/0129011

Google Scholar

[6] J.J. Koliha, A generalized Drazin inverse, Glasgow Math.J. 38(1996), 367-381.

DOI: 10.1017/s0017089500031803

Google Scholar

[7] J.J. Koliha, V. Rako?cevi'c, Continuity of the Drazin inverse II, Studia Math. 131(1998), 167-177.

Google Scholar

[8] D.S. Djordjevi'c, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73(2002), 115-125.

Google Scholar

[9] D.S. Cvetkovi'c-Ili'c,D.S. Djordjevi'cand Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra Appl. 418(2006), 53-61.

DOI: 10.1016/j.laa.2006.01.015

Google Scholar

[10] A. Ben Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, (1974).

Google Scholar

[11] S.L. Campbell, C.D. Meyer, Continuity properties of the Drazin inverse Inverse, Linear Algebra Appl. 10(1975), 77-83.

Google Scholar

[12] S.L. Campbell C.D. Meyer, GeneralizedInversesofLinearTransformations, Dover, New York, (1991).

Google Scholar

[13] S.L. Campbell, Singular Systems of Di?erential Equations I-II, Pitman, San Francisco, CA, (1980).

Google Scholar

[14] N. Castro-Gonz'alez, J.J. Koliha and V. Rako?cevi'c, Continuity and general pertur-bation of the Drazin inverse for closed linear operators, Abstr. Appl. Anal. 7(2002), 335-347.

DOI: 10.1155/s1085337502002890

Google Scholar

[15] N. Castro-Gonz'alez, J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A, 134(2004), 1085-1097.

Google Scholar

[16] R.E. Hartwig,G. WangandY. Wei. SomeadditiveresultsonDrazininverse. Linear Algebra Appl. 322(2001).

Google Scholar