New Injection Moulding Techniques for Automotive Aluminium-Based Foams - Part I

Article Preview

Abstract:

The raw material to be compacted by moulding is represented by aluminium alloy (ALUMIX 321) powder particles as metallic matrix and carbamide as foaming agent. The raw material to be injected is represented by the mixture (feedstock) between the wax-based binder system (40-60% mass) and the aluminium alloy (ALUMIX 321) powder particles (balance). The binder system is made of paraffin wax and stearic acid. The foaming effect is generated by addition of carbamide as foaming agent. Both categories of raw samples were washed in the ultrasonic machine and the aim of research was to study the physical properties and the macroscopic analysis of this materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-255

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, J. Baumeister, M. Weber, Powder Metallurgical Technology for the Production of Metallic Foams, Proceedings of the European Conference on Advanced PM Materials, (1995), 201-208.

Google Scholar

[2] M. Haesche, D. Lehmhus, J. Weise, M. Wichmann, I.C. MagnaboscoMocellin, Carbonates as Foaming Agent in Chip-based Aluminium Foam Precursor, J. Mater. Sci. Technol, 26-9 (2010), 845-850.

DOI: 10.1016/s1005-0302(10)60135-1

Google Scholar

[3] A. Byakova, I. Kartuzov, S. Gnyloskurenko, T. Nakamura, The Role of Foaming Agent and Processing Route in Mechanical Performance of Fabricated Aluminium Foams, ADV MATER SCI ENG, Article ID 607429, Vol 2014 (2014).

DOI: 10.1016/j.mspro.2014.07.608

Google Scholar

[4] A. Ibrahim, F. Zhang, E. Otterstein, E. Burkel, Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Materials and Design 32 (2011) 146–153.

DOI: 10.1016/j.matdes.2010.06.019

Google Scholar

[5] T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko,T. Nakamura, Foaming Agents for Powder Metallurgy Production of Aluminium Foam, Materials Transactions, 52-4 (2011, 728- 733.

DOI: 10.2320/matertrans.m2010401

Google Scholar

[6] C. E. Wen, Y. Yamada, P. D. Hodgson, fabrication of novel metal alloy foams for biomedical applications, Materials Forum, 29 (2005), 274-277.

Google Scholar

[7] G. Ryan, A. Pandit, D. PanagiotisApatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Review, Biomaterials 27 (2006) 2651–2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[8] A. Kennedy, Porous Metals and Metal Foams Made from Powders, Materials Science » Metals and Nonmetals » Powder Metallurgy, book edited by KatsuyoshiKondoh, ISBN 978-953-510071-3, Published: March 9, (2012).

DOI: 10.5772/33060

Google Scholar

[9] B. Friedrich, K. Jessen, G. Rombach, Aluminum foam – Production, Properties and Recycling Possibilities. Erzmetall 2003; 56(11): 656-660.

Google Scholar

[10] Y. Y. Zhao, D. X. Sun, A Novel Sintering-Dissolution Process for Manufacturing Al Foams. ScriptaMaterialia 2001; 44: 105–110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar

[11] M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, Metal foams-a design guide. Butterworth-Heinemann, London, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[12] B. Ashok Kumar, C. Naga Kumar, V. Chengal Reddy, Production of low cost aluminium foams, International Journal of Current Engineering and Technology, INPRESCO, ISSN 2277-4106, 2014, 40-44.

Google Scholar

[13] Z. Linxi, Y. Quanzhan, Z. Guirong, Z. Fangxin, S. Gang, Y. Bo, Additive manufacturing technologies of porous metal implants, China Foundry – Special report, 11-4 (2014), 322-331.

Google Scholar

[14] A. V. Byakova, S. V. Gnyloskurenko, A. I. Sirko, Y. V. Milman, T. Nakamura, The Role of Foaming Agent in Structure and Mechanical Performance of Al Based Foams, Materials Transactions, 47-9 (2006), 2131-2136.

DOI: 10.2320/matertrans.47.2131

Google Scholar

[15] A. V. Byakova, S. V. Gnyloskurenko, T. Nakamura, The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminium Foams, Metals 2 (2012), 95-112; doi: 10. 3390/met2020095.

DOI: 10.3390/met2020095

Google Scholar

[16] V. Kevorkijan, Low cost aluminium foams made by CaCO3 particulates, Association of Metallurgical Engineers of Serbia, M JoM, 16-3 (2010), 205-219.

Google Scholar

[17] S. deFátima Ferreira Mariotto, V. Guido, L. Y. Cho, C. Pacheco Soares, K. R. Cardoso, Porous Stainless Steel for Biomedical Applications, Materials Research, 14-2 (2011), 146-154.

DOI: 10.1590/s1516-14392011005000021

Google Scholar

[18] C.E. Wen, Y. Yamada, P.D. Hodgson, Fabrication of novel metal alloy foams for biomedical applications, MATERlALS FORUM VOLUME 29 (2005), 274-277.

Google Scholar

[19] Timmermans, Physico-chemical constants of pure organic compounds, Elsevier, (1950).

Google Scholar

[20] D. Roberts, L. Cooper, U.S. Patent 2. 268. 621 (1942), H. Pfleumer, U.S. Patent 2. 297. 022 (1942).

Google Scholar

[21] P. Achidrowitz, R. ungar, British Patent 538. 624 (1941).

Google Scholar

[22] R.H. Koppel, German Patent 563. 165 (1931).

Google Scholar