[1]
Roşca, V., Ilincioiu, D., et. al., Strength of Materials. Materials Testings, Universitaria Publishing House (2007), Craiova.
Google Scholar
[2]
YANG, P.C., NORRIS, C.H., STAVSKY, Y., Elastic Wave Propagation in Heterogeneous Plates, Int. Jour. Solids. Struct., 2 (1965), 664-684.
Google Scholar
[3]
WHITNEY, J.M., PAGANO, N.Y., Shear Deformation in Heterogeneous Anisotropic Plates, Jour. Appl. Mech., 37 (1970), 1031-1036.
DOI: 10.1115/1.3408654
Google Scholar
[4]
REDDY, J.N., A Review of Refined Theories of Laminated Composites Plates, Shock and Vibration, 22 (1990), 3-17.
Google Scholar
[5]
LIBRESCU, L., Formulation of an Elastodynamic Theory of Laminated Shear Deformable Flat Panels, Journ. Sound and Vibr., 147 (1989), 1-12.
DOI: 10.1016/0022-460x(91)90680-i
Google Scholar
[6]
LIBRESCU, L., KHDEIR, A.A., Analysis of Symmetric Crass-Ply Laminated Elastic Plates Using a High-Order Theory, Part. I: State of Stress and Displacement, Composites Structures, 79 (1990), 189-213.
DOI: 10.1016/0263-8223(88)90014-1
Google Scholar
[7]
KAO, J., RASS, R.J., Bending of multilayer sandwich beams, American Institute of Aeronautic and Astronautics Journal, 6 (1968), 1583-1585.
Google Scholar
[8]
SWIFT, G.W., HELLER, R.A., Layered beams analysis, ASCE Journal of Engineering Mechanics Division, 101 (1974), 267-282.
Google Scholar
[9]
SEIDE, P., An approximate theory for the bending of laminated plates, Mechanics Today, 5 (1980), 451-466.
DOI: 10.1016/b978-0-08-024249-1.50039-x
Google Scholar
[10]
REDDY, J.N., A generalization of two-dimensional theories of laminated composites plates, Communication in Applied Numerical Methods, 3 (1987), 173-180.
DOI: 10.1002/cnm.1630030303
Google Scholar
[11]
NOSIER, A., KAPANIA, R.K., REDDY, J.N., Free vibration analysis of laminated plates using a Lay-Wise Theory, American Institute of Aeronautic and Astronautics Journal, 31 (1993), 2335-2346.
DOI: 10.2514/3.11933
Google Scholar
[12]
Zhuk, Y., A., Guz, I., A., Active damping of the forced vibration of a hinged beam with piezoelectric layers, geometrical and physical nonlinearities taken into account, International Applied Mechanics, 45 (2009), 94-108.
DOI: 10.1007/s10778-009-0162-2
Google Scholar
[13]
Avramov, K., V., Gendelman, O., V., Forced oscillations of beam with essentially nonlinear absorber, Strength of Materials, 41 (2009), 310-317.
DOI: 10.1007/s11223-009-9125-4
Google Scholar
[14]
Chengju, F., et. al., Damping property of epoxy-based composite embedded with sol–gel-derived Pb(Zr0. 53Ti0. 47)O3 thin film, Journal of Materials Science: Materials in Electronics, 22 (2011), 911-914.
DOI: 10.1007/s10854-010-0235-3
Google Scholar
[15]
Lopez, G., A., et. al., Cu-Al-Ni-SMA-Based High-Damping Composites, Journal of Materials Engineering and Performance, 18 (2009), 459-462.
Google Scholar
[16]
Lugovskoi, Y., F., Chernyshev, L., I., Damping Properties of Sintered High-porosity Materials Based on Powders and Discrete Copper Fibers, Powder Metalurgy and Metal Ceramics, 45 (2006), 599-604.
DOI: 10.1007/s11106-006-0125-7
Google Scholar
[17]
Massenzio, M., s. a., Natural Frequency Evaluation of a cracked RC Beam With or Without Composite Strengthening for a Damage Assesment, Materials and Structures, 36 (2005), 865-873.
DOI: 10.1617/14235
Google Scholar
[18]
Mohapatra, A., R., Damping of Beams With Inserts, Disseration Thesis, National Institute of Technology (2010), Rourkela.
Google Scholar
[19]
Őz, H., R., Calculation of the Natural Frequencies of a Beam-Mass System Using Finite Element Method, Mathematical and Computational Applications, 5 (2000), 67-75.
DOI: 10.3390/mca5020067
Google Scholar
[20]
Bolcu D., Stanescu M.M., Ciuca I., et al., The Non-uniformity from the composite materials reinforced with fiber glass fabric, Materiale Plastice, 51(2014), 97-100.
DOI: 10.37358/mp.22.2.5589
Google Scholar
[21]
Papagiannopoulos, G., A., Beskos, D., E., On a modal damping identification model of building structures, Archive of Applied Mechanics, 76 (2006), 443-463.
DOI: 10.1007/s00419-006-0046-4
Google Scholar
[22]
Stănescu M.M., Study regarding the mechanical behaviour of Dammar based composite materials, reinforced with natural fiber fabrics, Materiale Plastice, 52(2015), 596-600.
Google Scholar
[23]
Park, T., H., Vibration and Damping Characteristics of a Beam with a Partially Sandwiched Viscoelastic Layer, Journal of Adhesion, 61 (2006), 97-122.
DOI: 10.1080/00218469708010518
Google Scholar
[24]
Mihalcu, M., Reinforced Plastic materials, Technical Publishing House (1973), Bucharest.
Google Scholar
[25]
Tărâţă, Daniela., Mangra, Mihai, Special Materials, University of Craiova Publishing House (1996), Craiova.
Google Scholar
[26]
Ispas S., Composite materials, Technical Publishing House (1987), Bucharest.
Google Scholar
[27]
Tărâţă, D.F., Stănescu, G., Contribution to the elaboration and characterization of the certain epoxi- textile fiber composites, International conference of Scientifically Communications Iaşi (2000), 157-160.
Google Scholar
[28]
Miriţoiu, C., M., et. al., Determination of Damping Coefficients for Sandwich Bars with Polypropylene Honeycomb Core and the Exterior Layers Reinforced with Metal Fabric, Materiale Plastice, 49 (2012), 118-123.
Google Scholar