Study about the Influence of Two-Steps Sintering (TTS) Route for an Alloy Based on Titanium

Article Preview

Abstract:

This paper describes the influence of two-steps sintering regime temperatures concerning the final properties of titanium hydride based alloy obtaining by Two-Steps Sintering (TTS) route, which is a method that is part of the Powder Metallurgy (PM) technology. The initial titanium hydride powder has been mixed with some metallic powders as: Alumix, Mn, Zr, Sn and graphite was added in different proportions for improving the final mechanical properties. The Two-Steps Sintering (TTS) route have been applied for obtaining a low-cost Ti- alloy. The effect of the sintering regime temperatures on the height and diameter shrinkages and density for these alloys based on titanium hydride powder was studied

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-261

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci., 32 (2012), pp.14-34.

Google Scholar

[2] C. Leyens, M. Peter, In: Titanium and Titanium Alloys Fundamentals and Applications, Wiley- -VCH Verlag Publishing, Weinheim, (2003).

Google Scholar

[3] C. Chunxiang, Hu Bao Min, Z. Lichen, L. Shuangjin, Titanium alloy production technology, market prospects and industry development, J. Mater. Design, 32 (2011), pp.1684-1691.

DOI: 10.1016/j.matdes.2010.09.011

Google Scholar

[4] H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mat. Sci and Eng.: C, 26(2006), pp.1269-1277.

Google Scholar

[5] L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders, J. Mech. Behav. Biomed. Mater. 145 (2012), pp.33-45.

DOI: 10.1016/j.jmbbm.2012.05.019

Google Scholar

[6] C.A. Lavender, V.S. Moxson, V.A. Duz, Cost-Effective Production of Powder Metallurgy Titanium Auto Components for High-Volume Commercial Applications, 2010, http: /www. pnl. gov/main/publications/external/technical_reports/PNNL-19932. pdf.

DOI: 10.2172/1009762

Google Scholar

[7] Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, B.Y. Huang, Design of powder metallurgy titanium alloys and composites, Mat. Sci. and Eng.: A, 418(2006), pp.25-35.

DOI: 10.1016/j.msea.2005.10.057

Google Scholar

[8] G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design, Metall. Mater. Trans. A, (2006), p.3429–3436.

DOI: 10.1007/s11661-006-1037-3

Google Scholar

[9] Ma Qian, Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication, Int. J. of Powder Metallurgy, 46(2010), pp.29-44.

Google Scholar

[10] A.A. Abu, B. Sulonga, N. Muhamada, J. Syarif, M.I. Ramlia, Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review, Mat. & Design, 55 (2014), pp.165-175.

DOI: 10.1016/j.matdes.2013.09.045

Google Scholar

[11] F.H. Froes, Powder Metallurgy of Titanium Alloys, Advances in Powder Metallurgy, Woodhead Publishing Ltd. Cambridge, (2013).

DOI: 10.1533/9780857098900.2.202

Google Scholar

[12] C.I., Pascu, O. Gingu, I. Ciupitu, I., P. Rotaru, Patent. RO, no. A/00317/(2013).

Google Scholar

[13] C.G. McCracken, C. Motchenbacher, D.P. Barbis, Review of titanium-powder-production methods, Int. J. Powder Metall., 46(2010), pp.19-26.

Google Scholar

[14] O. Ivasishin, V. Moxson, Low-cost titanium hydride powder metallurgy, in: Ma Qian and F. H. Froes (Est), Titanium hydride powder metallurgy, Science, Technology and Applications, Elsevier Inc., Library of the Congress, New York, 2015, p.117–148.

DOI: 10.1016/b978-0-12-800054-0.00008-3

Google Scholar

[15] H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J. M. Zhang, Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mat., 436 (2010), pp.157-163.

DOI: 10.4028/www.scientific.net/kem.436.157

Google Scholar

[16] H. Liu, P. He, J.C. Feng, J. Cao, Kinetic study on nonisothermal dehydrogenation of TiH2 powders, Int. J. Hydrogen Energ., 34(2009), pp.3018-3025.

DOI: 10.1016/j.ijhydene.2009.01.095

Google Scholar

[17] M.B. Novikova, A.M. Ponomarenko, Kinetics of oxidation of Titanium Hydride Powder, Met. Sci. Heat Treat. 50 (2008), pp.355-358.

DOI: 10.1007/s11041-008-9072-x

Google Scholar

[18] Z. Z. Fang, P. Sun, H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mat., 14 (2012), pp.383-387.

DOI: 10.1002/adem.201100269

Google Scholar