[1]
C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci., 32 (2012), pp.14-34.
Google Scholar
[2]
C. Leyens, M. Peter, In: Titanium and Titanium Alloys Fundamentals and Applications, Wiley- -VCH Verlag Publishing, Weinheim, (2003).
Google Scholar
[3]
C. Chunxiang, Hu Bao Min, Z. Lichen, L. Shuangjin, Titanium alloy production technology, market prospects and industry development, J. Mater. Design, 32 (2011), pp.1684-1691.
DOI: 10.1016/j.matdes.2010.09.011
Google Scholar
[4]
H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mat. Sci and Eng.: C, 26(2006), pp.1269-1277.
Google Scholar
[5]
L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders, J. Mech. Behav. Biomed. Mater. 145 (2012), pp.33-45.
DOI: 10.1016/j.jmbbm.2012.05.019
Google Scholar
[6]
C.A. Lavender, V.S. Moxson, V.A. Duz, Cost-Effective Production of Powder Metallurgy Titanium Auto Components for High-Volume Commercial Applications, 2010, http: /www. pnl. gov/main/publications/external/technical_reports/PNNL-19932. pdf.
DOI: 10.2172/1009762
Google Scholar
[7]
Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, B.Y. Huang, Design of powder metallurgy titanium alloys and composites, Mat. Sci. and Eng.: A, 418(2006), pp.25-35.
DOI: 10.1016/j.msea.2005.10.057
Google Scholar
[8]
G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design, Metall. Mater. Trans. A, (2006), p.3429–3436.
DOI: 10.1007/s11661-006-1037-3
Google Scholar
[9]
Ma Qian, Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication, Int. J. of Powder Metallurgy, 46(2010), pp.29-44.
Google Scholar
[10]
A.A. Abu, B. Sulonga, N. Muhamada, J. Syarif, M.I. Ramlia, Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review, Mat. & Design, 55 (2014), pp.165-175.
DOI: 10.1016/j.matdes.2013.09.045
Google Scholar
[11]
F.H. Froes, Powder Metallurgy of Titanium Alloys, Advances in Powder Metallurgy, Woodhead Publishing Ltd. Cambridge, (2013).
DOI: 10.1533/9780857098900.2.202
Google Scholar
[12]
C.I., Pascu, O. Gingu, I. Ciupitu, I., P. Rotaru, Patent. RO, no. A/00317/(2013).
Google Scholar
[13]
C.G. McCracken, C. Motchenbacher, D.P. Barbis, Review of titanium-powder-production methods, Int. J. Powder Metall., 46(2010), pp.19-26.
Google Scholar
[14]
O. Ivasishin, V. Moxson, Low-cost titanium hydride powder metallurgy, in: Ma Qian and F. H. Froes (Est), Titanium hydride powder metallurgy, Science, Technology and Applications, Elsevier Inc., Library of the Congress, New York, 2015, p.117–148.
DOI: 10.1016/b978-0-12-800054-0.00008-3
Google Scholar
[15]
H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J. M. Zhang, Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mat., 436 (2010), pp.157-163.
DOI: 10.4028/www.scientific.net/kem.436.157
Google Scholar
[16]
H. Liu, P. He, J.C. Feng, J. Cao, Kinetic study on nonisothermal dehydrogenation of TiH2 powders, Int. J. Hydrogen Energ., 34(2009), pp.3018-3025.
DOI: 10.1016/j.ijhydene.2009.01.095
Google Scholar
[17]
M.B. Novikova, A.M. Ponomarenko, Kinetics of oxidation of Titanium Hydride Powder, Met. Sci. Heat Treat. 50 (2008), pp.355-358.
DOI: 10.1007/s11041-008-9072-x
Google Scholar
[18]
Z. Z. Fang, P. Sun, H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mat., 14 (2012), pp.383-387.
DOI: 10.1002/adem.201100269
Google Scholar