Magnetic Gearing as a Functional Principle in Electric Drives

Article Preview

Abstract:

The partitioned stator flux reversal machine (PS-FRPM) is a novel stator PM machine topology, which exhibits a higher torque capability than its single stator counterpart and the conventional permanent magnet synchronous machine (PMSM). The PS-FRPM consists of two stators, one which carries the armature winding, and one which is equipped with surface mounted permanent magnets. The rotor is sandwiched between the two stators. The separation of the stator allows a better utilization of the machine volume which results in a higher torque density. Furthermore, because the magnets are placed on a stationary component, they can be cooled effectively. Consequently, critical rare-earth materials can be saved.The structure of the PS-FRPM is very similar to that of magnetic gears. In this paper the torque production of a PS-FRPM is described by means of the magnetic gearing effect. First the magnetic gearing effect is introduced and then the corresponding analytics is transferred to the PS-FRPM. Based on Maxwell's stress tensor, the torque contributions of the individual space harmonics are determined. In contrast to conventional machines, the torque in PS-FRPM is produced by several space harmonics in both air gaps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-173

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Cheng, W. Hua, X. Zhu, X. Kong, J. Zhang, and W. Zhao, Stator-permanent magnet brushless machines: Concepts, developments and applications,, International Conference on Electrical Machines and Systems (ICEMS), pp.2802-2807, (2008).

DOI: 10.1109/icems.2019.8921792

Google Scholar

[2] S. E. Rauch and L. J. Johnson, Design principles of flux-switch alternators [includes discussion],, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 74, no. 3, (1955).

DOI: 10.1109/aieepas.1955.4499226

Google Scholar

[3] Y. Liao, F. Liang, and T. A. Lipo, A novel permanent magnet motor with doubly salient structure,, in Conference record of the 1992 IEEE Industry Applications Society Annual Meeting. New York and Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1992, pp.308-314.

DOI: 10.1109/ias.1992.244279

Google Scholar

[4] C. Wang, S. A. Nasar, and I. Boldea, Three-phase flux reversal machine (frm),, IEE Proceedings - Electric Power Applications, vol. 146, no. 2, p.139, (1999).

DOI: 10.1049/ip-epa:19990114

Google Scholar

[5] E. Hoang, A. H. Ben-Ahmed, J. Lucidarme, Switching flux permanent magnet polyphased machines,, Proc. Eur. Conf. Power Electron. Appl., pp.903-908, (1997).

Google Scholar

[6] M. Cheng, W. Hua, J. Zhang, and W. Zhao, Overview of stator-permanent magnet brushless machines,, IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp.5087-5101, (2011).

DOI: 10.1109/tie.2011.2123853

Google Scholar

[7] W. Hua, Z. Q. Zhu, M. Cheng, Y. Pang, and D. Howe, Comparison of flux-switching and doubly-salient permanent magnet brushless machines,, in Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, ICEMS 2005, M. Cheng, Ed. Beijing: Internat. Academic Publ. World Publ. Corp, 2005, pp.165-170.

DOI: 10.1109/icems.2005.202506

Google Scholar

[8] J. Zhang, M. Cheng, Z. Chen, and W. Hua, Comparison of stator-mounted permanent-magnet machines based on a general power equation,, IEEE Transactions on Energy Conversion, vol. 24, no. 4, pp.826-834, (2009).

DOI: 10.1109/tec.2009.2025346

Google Scholar

[9] W. Hua, M. Cheng, Z. Q. Zhu, W. Zhao, and X. Kong, Comparison of electromagnetic performance of brushless motors having magnets in stator and rotor,, Journal of Applied Physics, vol. 103, no. 7, p. 07F124, (2008).

DOI: 10.1063/1.2838222

Google Scholar

[10] Pang, Y., Zhu Z. Q., Howe D., Iwasaki S., Deodhar R., Pride A., Comparative study of fluxswitching and interior permanent magnet machine,, Proceeding of International Conference on Electrical Machines and Systems, vol. 2007, (2007).

DOI: 10.1109/icems12746.2007.4412185

Google Scholar

[11] A. Thomas, Z. Q. Zhu, G. W. Jewell, and D. Howe, Flux-switching pm brushless machines with alternative stator and rotor pole combinations,, Journal of Asian Electric Vehicles, vol. 6, no. 1, pp.1103-1110, (2008).

DOI: 10.4130/jaev.6.1103

Google Scholar

[12] J. T. Chen, Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux pm brushless ac machines,, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp.1681-1691, (2011).

DOI: 10.1109/tia.2011.2155011

Google Scholar

[13] Chen, J. T. and Zhu, Z. Q. and Iwasaki, S. and Deodhar, R. P., A novel e-core switched-flux pm brushless ac machine,, IEEE Transactions on Industry Applications, vol. 47, no. 3, pp.1273-1282, (2011).

DOI: 10.1109/tia.2011.2126543

Google Scholar

[14] Z. Q. Zhu, J. T. Chen, Y. Pang, D. Howe, S. Iwasaki, and R. Deodhar, Analysis of a novel multitooth flux-switching pm brushless ac machine for high torque direct-drive applications,, IEEE Transactions on Magnetics, vol. 44, no. 11, pp.4313-4316, (2008).

DOI: 10.1109/tmag.2008.2001525

Google Scholar

[15] J.-X. Shen and W.-Z. Fei, Permanent magnet flux switching machines - topologies, analysis and optimization,, in Fourth International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2013. Piscataway, NJ: IEEE, 2013, pp.352-366.

DOI: 10.1109/powereng.2013.6635633

Google Scholar

[16] Z. Q. Zhu and D. Evans, Overview of recent advances in innovative electrical machines - with particular reference to magnetically geared switched flux machines,, in 17th International Conference on Electrical Machines and Systems (ICEMS), 2014. Piscataway, NJ: IEEE, 2014, pp.1-10.

DOI: 10.1109/icems.2014.7013921

Google Scholar

[17] D. J. Evans, Z. Q. Zhu, Z. Z. Wu, H. L. Zhan, and X. Ge, Comparative analysis of parasitic losses in partitioned stator switched flux pm machines with double- and single-layer windings,, in IEEE International Electric Machines and Drives Conference (IEMDC). Piscataway, NJ: IEEE, 2015, pp.167-173.

DOI: 10.1109/iemdc.2015.7409055

Google Scholar

[18] Z. Q. Zhu, Z. Z. Wu, D. J. Evans, and W. Q. Chu, Novel electrical machines having separate pm excitation stator,, IEEE Transactions on Magnetics, vol. 51, no. 4, pp.1-9, (2015).

DOI: 10.1109/tmag.2014.2358199

Google Scholar

[19] Z. Q. Zhu, H. Hua, Di Wu, J. T. Shi, and Z. Z. Wu, Comparative study of partitioned stator machines with different pm excitation stators,, IEEE Transactions on Industry Applications, vol. 52, no. 1, pp.199-208, (2016).

DOI: 10.1109/tia.2015.2477055

Google Scholar

[20] K. Atallah, S. D. Calverley, and D. Howe, Design, analysis and realisation of a highperformance magnetic gear,, IEE Proceedings - Electric Power Applications, vol. 151, no. 2, p.135, (2004).

DOI: 10.1049/ip-epa:20040224

Google Scholar

[21] P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, and O. Nielsen, Development of a highperformance magnetic gear,, IEEE Transactions on Industry Applications, vol. 41, no. 3, pp.764-770, (2005).

DOI: 10.1109/tia.2005.847319

Google Scholar

[22] L. L. Wang, J. X. Shen, P. Luk, W. Z. Fei, C. F. Wang, and H. Hao, Development of a magneticgeared permanent-magnet brushless motor,, IEEE Transactions on Magnetics, vol. 45, no. 10, pp.4578-4581, (2009).

DOI: 10.1109/tmag.2009.2023071

Google Scholar

[23] Q. Wang, S. Niu, and S. Yang, Design optimization and comparative study of novel magneticgeared permanent magnet machines,, IEEE Transactions on Magnetics, vol. 53, no. 6, pp.1-4, (2017).

DOI: 10.1109/tmag.2017.2662947

Google Scholar

[24] Z. Z. Wu and Z. Q. Zhu, Analysis of magnetic gearing effect in partitioned stator switched flux pm machines,, IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp.1239-1249, (2016).

DOI: 10.1109/tec.2016.2590988

Google Scholar

[25] H. O. Seinsch, Oberfelderscheinungen in Drehfeldmaschinen: Grundlagen zur analytischen und numerischen Berechnung [Space harmonics in electrical machines: Fundamentals of analytic and numeric calculations]. Stuttgart: Teubner, (1992).

Google Scholar

[26] M. Scheidt, Entwurfskriterien für permanentmagneterregte Synchronmaschinen in Zahnspulentechnik unter besonderer Berücksichtigung der Zusatzverluste [Design criteria for permanent magnet synchronous machines having tooth coil windings with special consideration of additional losses], ser. Kaiserslauterer Beiträge zur Antriebstechnik. Aachen: Shaker, 2009, vol. Bd. 3.

Google Scholar

[27] G. Müller and B. Ponick, Theorie elektrischer Maschinen [Theory of electric drives], 6th ed., ser. Elektrische Maschinen. Weinheim: Wiley-VCH, (2009).

DOI: 10.1002/9783527676095.ch2

Google Scholar

[28] C. M. Spargo, B. C. Mecrow, and J. D. Widmer, A seminumerical finite-element postprocessing torque ripple analysis technique for synchronous electric machines utilizing the air-gap maxwell stress tensor,, IEEE Transactions on Magnetics, vol. 50, no. 5, pp.1-9, (2014).

DOI: 10.1109/tmag.2013.2295547

Google Scholar