Contribution to the Reduction of Annealing Processes in the Manufacturing of Valve Solenoids by Using Inline Measuring Technology in the Caulking Process

Article Preview

Abstract:

Electromagnetic actors (solenoids) are used in automotive and automation technology as valve actors for pneumatics and hydraulics or as actuating and pressure solenoids. During assembly there are often press-in and caulking processes used. A central quality aspect of the final control elements is the adherence to defined actuating force ranges in order to ensure the switching process and at the same time to keep wear within limits. These defined force ranges can currently only be maintained by additional heat treatment of the parts. The hysteresis of the assembled unit can be influenced by the caulking. The objective of this paper is to propose the potential reduction of annealing processes by revealing the interdependencies between the magnetic interactions of the individual components and the assembly process parameters. In addition, errors in the caulking process are detected and prevented at an early stage. A magnetic characterization of the soft magnetic components and assemblies before and during their assembly is proposed. Furthermore, the integration of the measurement data into a process control system is intended. The precondition is the development and construction of measuring equipment and systems that can be used to assess the magnetic properties at an early stage of assembly. The assembly can then be adjusted in order to compensate batch fluctuations. As a consequence new materials can be used to eliminate complex annealing processes prior to assembly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-207

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Denso Corporation: Integrated Report 2017. URL https://www.denso.com/ global/en/news/investors/2017/2017_integrated_report.pdf – Überprüfungsdatum 2018-03-23.

Google Scholar

[2] Stuiver, W.: Kendrion - Annual Report 2017: Simplify, Focus, Growth. URL https://publish.folders.eu/fixed/2016288?token=262d7f1713fb1b7112545c00f629103e&pageMode=single – Überprüfungsdatum 2018-03-23.

Google Scholar

[3] Kallenbach, E.: Elektromagnete : Grundlagen, Berechnung, Entwurf und Anwendung. 4., überarbeitete und erweiterte Auflage. Wiesbaden : Vieweg+Teubner Verlag, (2012).

Google Scholar

[4] Chen, C. H.; Higgins, A. K.; Strnat, R. M.: Effect of geometry on magnetization distortion in closed-circuit magnetic measurements. In: Journal of Magnetism and Magnetic Materials 320 (2008), Nr. 9, L84-L87.

DOI: 10.1016/j.jmmm.2008.01.035

Google Scholar

[5] Baumbach, J. ; Kallenbach, E. ; Kucera, U. ; Neumann, K. ; Radler, O.: MagHyst-modular : Ein universelles Gerät zur Messung magnetischer Größen und Kennlinien an Materialien, Halbzeugen und Magnetaktoren. URL http://www.stz-mtr.de/stz-mtr/de/maghyst-de/publikationen-de/item/maghyst-modular-ein-universelles-geraet-zur-messung?category_id=2 – Überprüfungsdatum 2018-03-23.

Google Scholar

[6] Scharff, P. (Hrsg.): Mechanical engineering from macro to nano - Ein neuartiges Verfahren zur Messung magnetischer Bauteile und Magnetaktoren : In: 50. Internationales Wissenschaftliches Kolloquium, 19. - 23.9.2005 ;. Ilmenau : Verl. ISLE, (2005).

Google Scholar

[7] Radler, O. ; Rosenbaum, S. ; Ströhla, T. ; Kallenbach, E. ; Gadyuchko, A. ; Kucera, U. ; Baumbach, J. ; Zöppig, V. ; Rausch, T. ; Wittig, K.-H.: Influence of Magnetic Materials on the Function of Electromagnetic Actuators. In: 11th International Conference on New Actuators, 2008, S. 441–444.

Google Scholar

[8] Gutfleisch, O.; Willard, M. A. ; Brück, E. ; Chen, C. H. ; Sankar, S. G. ; Liu, J. P.: Magnetic materials and devices for the 21st century : Stronger, lighter, and more energy efficient. In: Advanced materials (Deerfield Beach, Fla.) 23 (2011).

DOI: 10.1002/adma.201002180

Google Scholar

[9] Rosenbaum, S.; Ströhla, T.; Kallenbach, E. ; Janschek, K.: Entwurf elektromagnetischer Aktoren unter Berücksichtigung von Hysterese. Zugl.: Ilmenau, Techn. Univ., Diss., 2011. Ilmenau, Ilmenau: Univ.-Bibliothek; Univ.-Verl. Ilmenau, 2011 (Ilmenauer Schriften zur Mechatronik 2).

DOI: 10.11129/detail.9783955530396.152

Google Scholar

[10] Schoppa, A. ; Schneider, J. ; Wuppermann, C.-D: Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels. In: Journal of Magnetism and Magnetic Materials 215-216 (2000), S. 74–78.

DOI: 10.1016/s0304-8853(00)00070-6

Google Scholar

[11] Bretschneider, J. ; Wilde, A. ; Schneider, P. ; Hohe, H-P. ; Koehler, U.: Design of multi-dimensional magnetic position sensor systems based on HallinOne® technology. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE 2010) : IEEE, 2010, S. 422–427.

DOI: 10.1109/isie.2010.5637864

Google Scholar

[12] Bretschneider, J.; Wilde, A. ; Obenhaus, T.: Entwurf multidimensionaler Positionssensorik auf Basis von HallinOne(R)-Technologie : In: Simulation technischer Systeme (STS), Grundlagen und Methoden in Modellbildung und Simulation (GMMS) ; 4.-5. März 2010, S. 199–206.

Google Scholar

[13] Hackner, M.; Hohe, H-P.; Stahl-Offergeld, M.: Im Messbetrieb kalibrierbarer magnetischer 3D-Punktsensor. Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung. Anmeldenr. DE200610037226. Veröffentlichungsnr. DE102006037226 B4.

Google Scholar

[14] Heyder, A.; Losch, T. ; Meyer, A.; Abersfelder, S.; Franke, J.: Comparison analysis of the magnetic field and the magnetic force inside of an electromagnetic actuator with the use of an armature measuring sensor. In: 2016 6th International Electric Drives Production Conference (EDPC): IEEE, 2016, S. 262–265.

DOI: 10.1109/edpc.2016.7851343

Google Scholar

[15] Grima Cintas, P.; Marco-Almagro, L.; Tort-Martorell Llabres, J.: Industrial statistics with Minitab, John Wiley & Sons, Chichester, West Sussex, U.K., (2012).

Google Scholar