The Micro-Temperatures of the Peaks and Valleys of Sliding Rough Surfaces

Abstract:

Article Preview

The surface micro-temperature of sliding, rough bodies is an important factor affecting contact properties, such as chemical reactions of automatic injectors for medicine and chemical processes and surface failure of micro-and macro-devices. In this work, the Finite Element Method is used to analyze the micro-temperature of the peaks and valleys of multiplying asperity sliding contact surfaces. The affecting parameters include pressure, roughness, sliding speed, Peclet number, and thermal conductivity of rough surfaces. Analysis results showed that the effects of the studied parameters are different to those of peak and valley temperatures. While pressure increased, the increasing rate of the temperature rise parameter of valleys was larger than those of peaks. The temperature rise of peaks increased as roughness increased. On the contrary, the temperature rise of valleys decreased as roughness increased. Sliding speed and thermal conductivity played the most important roles in affecting the maximum micro-temperature rise. The temperature rise difference between peaks and valleys was almost proportional to thermal conductivity, and was inversely proportional to sliding speed for all cases. This transient thermal analysis enables precision control of interface micro-temperature for micro-moving devices.

Info:

Periodical:

Edited by:

Yunn Lin Hwang

Pages:

53-62

Citation:

S. Y. Chern et al., "The Micro-Temperatures of the Peaks and Valleys of Sliding Rough Surfaces", Applied Mechanics and Materials, Vol. 883, pp. 53-62, 2018

Online since:

July 2018

Export:

Price:

$38.00

[1] K.D. Esmeryan, I.D. Avramov and E.I. Radeva: Temperature frequency characteristics of hexamethyldisiloxane (HMDSO) polymer coated Rayleigh surface acoustic wave (SAW) resonators for gas-phase sensor applications. Micromachines, Vol. 3 (2012).

DOI: https://doi.org/10.3390/mi3020413

[2] A. Schwirtz and H. Seeger: Comparison of the robustness and functionality of three adrenaline auto-injectors. J Asthma Allergy, Vol. 5 (2012), pp.39-49.

DOI: https://doi.org/10.2147/jaa.s33688

[3] S.H. Wang, C.Y. Shen, J.M. Su and S.W. Chang: A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite. Sensors, Vol. 15 (2015), pp.7084-7095.

DOI: https://doi.org/10.3390/s150407084

[4] P.T. Zwierczyk and K. Varadi: Thermal stress analysis of a railway wheel in sliding-rolling motion. ASME J. Tribol., Vol. 136 (2014), p.1–8.

DOI: https://doi.org/10.1115/1.4027544

[5] K. Handa and F. Morimoto: Influence of wheel/rail tangential traction force on thermal cracking of railway wheels. WEAR, Vol. 289 (2012), p.112–118.

DOI: https://doi.org/10.1016/j.wear.2012.04.008

[6] H. Blok: Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proc. Inst. Mech. Eng., Vol. 2 (1937), p.222–235.

[7] J.C. Jaeger: Moving sources of heat and the temperature at sliding surfaces. J. proc. R. Soc. N.S.W., Vol. 76 (1942), p.203–224.

[8] X. Tian and F.E. Kennedy: Maximum and average flash temperatures in sliding contacts. ASME J. Tribol., Vol. 116 (1994), p.167–174.

DOI: https://doi.org/10.1115/1.2927035

[9] S. Wang and K. Komvopoulos: A fractal theory of the interfacial temperature distribution in the slow sliding regime: part i – elastic contact and heat transfer analysis. ASME J. Tribol., Vol. 116 (1994), p.812–822.

DOI: https://doi.org/10.1115/1.2927338

[10] K. Knothe and S. Liebelt: Determination of temperatures for sliding contact with applications for wheel-rail systems. WEAR, Vol. 189 (1995), p.91–99.

DOI: https://doi.org/10.1016/0043-1648(95)06666-7

[11] M. Haghpanahi, S. Salimi, P. Bahemmat, S. Sima: 3-D transient analytical solution based on green's function to temperature field in friction stir welding Appl. Math. Model., Vol. 37 (2013), p.9865–9884.

DOI: https://doi.org/10.1016/j.apm.2013.05.034

[12] V.M. Kitetu, T. Onyango, J.K. Kwanza, N.M. Mutua: Determination of one dimensional temperature distribution in metallic bar using green's function method. AJAM., Vol. 1 (2013), p.55–70.

DOI: https://doi.org/10.11648/j.ajam.20130104.14

[13] S.B. Liu, Q.J. Wang, S. J. Harris: Surface normal thermoelastic displacement in moving rough contacts. ASME J. Tribol., Vol. 125 (2003), p.862–868.

DOI: https://doi.org/10.1115/1.1574517

[14] S.B. Liu and Q.J. Wang: Transient thermoelastic stress fields in a half-space. ASME J. Tribol., Vol. 125 (2003), p.33–43.

[15] W.W. Chen, Q.J. Wang and W. Kim: Transient Thermo-mechanical analysis of sliding electrical contacts of elasto-plastic bodies, thermal softening, and melting inception. ASME J. Tribol., Vol. 131 (2009), p.1–6.

DOI: https://doi.org/10.1115/1.3084214

[16] A.A. Yevtushenko and E.G. lvanyk: Ukhanska, 0.M. Transient temperature of local moving areas of sliding contact. Tribol. Int., Vol. 30 (1997), pp.209-214.

DOI: https://doi.org/10.1016/s0301-679x(96)00044-8

[17] N. Laraqi: An exact explicit analytical solution of the steady-state temperature in a half Space subjected to a moving circular heat source. ASME J. Tribol., Vol. 125 (2003), p.859–862.

DOI: https://doi.org/10.1115/1.1573233

[18] N. Ye and K. Komvopoulos: Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading. ASME J. Tribol., Vol. 125 (2003), p.52–59.

DOI: https://doi.org/10.1115/1.1497360

[19] P. Sahoo and B. Chatterjee: Adhikary, D. Finite element based elastic-plastic contact behaviour of a sphere against a rigid flat – effect of strain hardening. IJET., Vol. 2 (2010), p.1–6.

[20] S.M. Kulkarni, C.A. Rubin and G.T. Hahn: Elasto-plastic coupled temperature-displacement finite element analysis of two-dimensional rolling-sliding contact with a translating heat source. ASME J. Tribol., Vol. 113 (1991), p.93–101.

DOI: https://doi.org/10.1115/1.2920609

[21] G. Liu, G. Wanga and S.B. Liu: A three-dimensional thermal- mechanical asperity contact model for two nominally flat surfaces in contact. ASME J. Tribol., Vol. 123 (2000), p.595–602.

DOI: https://doi.org/10.1115/1.1308044

[22] X.F. Zhang, B. Lin and H. Xi: Validation of an analytical model for grinding temperature in surface grinding by cup wheel with numerical and experimental results. Int. J. Heat Mass Transfer, Vol. 58 (2013), p.29–42.

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.022

[23] A. Ovcharenko, M. Yang, K. Chun and F.E. Talke: Transient thermomechanical contact of an impacting sphere on a moving flat. ASME J. Tribol., Vol. 133 (2011), pp.031404-9.

DOI: https://doi.org/10.1115/1.4003996

[24] J.F. Lin, J.C. Chung, J.W. Chen and T.C. Liu: Thermal analysis of the transient temperatures arising at the contact spots of two sliding surfaces. ASME J. Tribol., Vol. 127 (2005), p.694–704.

DOI: https://doi.org/10.1115/1.2000983

[25] J.H. Horng, C.C. Wei, H.J. Tsai and B.C. Shiu: A study of surface friction and particle friction between rough surfaces. Wear, Vol. 267 (2009), pp.1257-1263.

DOI: https://doi.org/10.1016/j.wear.2009.02.017

[26] S.Y. Chern, J.H. Horng and S.H. Chen: Study of temperature distributions of sliding block with asperity surface. SIA., Vol. 43 (2011), p.1509–1513.

DOI: https://doi.org/10.1002/sia.3745

[27] H.W. Wu, Y.Y. Chen and J.H. Horng: Contact temperature under three-body dry friction conditions. WEAR, Vols. 330–331 (2015), p.85–92.