Production and Application of Biosurfactant Produced by Agrobacterium rubi L5 Isolated from Mangrove Sediments

Abstract:

Article Preview

An effective biosurfactant-producing bacteria, isolate L5, was isolated from mangrove sediments from both east coast and west coast of Southern of Thailand. Analysis of the 16S rRNA gene sequence confirmed that isolate L5 was Agrobacterium rubi with 100% homology. The biosurfactant production was performed using a mineral salt medium (MSM) with molasses as a carbon and commercial monosodium glutamate (MSG) as nitrogen sources. Under optimized conditions, A. rubi L5 was able to grow and produce biosurfactant with the yield of 4.62 g/l at 54 h of cultivation. It could reduce the surface tension of pure water from 72.0 to 25.5 mN/m and exhibit emulsification activity toward palm oil with 65.4%. The biosurfactant found to be stable even under extreme pH, temperature and salinity conditions. The results revealed the potential use of a biosurfactant produced by A. rubi L5 to enhance mobilization sorbed motor oil from environment in comparison with those of synthetic surfactants, i.e. a nonionic surfactant Tween 80 and anionic surfactants sodium dodecyl sulfate.

Info:

Periodical:

Edited by:

Ruangdet Wongla

Pages:

98-104

Citation:

P. Dikit et al., "Production and Application of Biosurfactant Produced by Agrobacterium rubi L5 Isolated from Mangrove Sediments", Applied Mechanics and Materials, Vol. 886, pp. 98-104, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] H. Thatoi, B.C. Behera, R.R. Mishra, S.K. Dutta, Biodiversity and biotechnological potential of microorganisms from mangrove ecosystem: a review, Ann. Microbiol. 63(2012) 1-19.

DOI: https://doi.org/10.1007/s13213-012-0442-7

[2] I. Mnif, D. Ghribi, Microbial derived surface active compounds: properties and screening concept, World J. Microbiol. Biotechnol. 31 (2015) 691-706.

DOI: https://doi.org/10.1007/s11274-015-1866-6

[3] A. Singh, J.D.V. Hamme, O.P. Ward, Surfactants in microbiology and biotechnology: part 2. Application aspects, Biotechnol. Adv. 25(2007) 99-121.

[4] I.M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M.G. Martonotti, L. Fracchia, T.J. Smyth, R. Marchant, Microbial biosurfactants production, applications and future potential, Appl. Microbiol. Biotechnol. 87(2010) 427-444.

DOI: https://doi.org/10.1007/s00253-010-2589-0

[5] R. Marchant, I.M. Banat, Microbial biosurfactants: challenges and opportunities for future exploitation, Trends Biotechnol. 30(2012) 558-565.

DOI: https://doi.org/10.1016/j.tibtech.2012.07.003

[6] I.M. Banat, R.S. Makkar, S.S. Cameotra, Potential commercial applications of microbial surfactants, Appl. Microbiol. Biotechnol. 53(2000) 495-508.

DOI: https://doi.org/10.1007/s002530051648

[7] A. Saimmai, O. Rukadee, T. Onlamool, V. Sobhon, S. Maneerat, Characterization and phylogenetic analysis of microbial surface active compounds-producing bacteria, Appl. Biochem. Biotech. 168(2012) 1003-1018.

DOI: https://doi.org/10.1007/s12010-012-9836-z

[8] W.G. Weisburg, S.M. Barns, D.A. Pelletier, D.J. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173(1991) 697-703.

DOI: https://doi.org/10.1128/jb.173.2.697-703.1991

[9] C.C. Chooklin, S. Maneerat, A. Saimmai, Using corn husks powder as a novel substrate to produce a surface active compound from Labrenzia aggregate KP-5, J. Surf. Detergents. 21(2018) 523-539.

DOI: https://doi.org/10.1002/jsde.12047

[10] H.B.S. Sobrinho, R.D. Rufino, J.M. Luna, A.A. Salgueiro, G.M. Campos-Takaki, L.F.C. Leite, L.A. Sarubbo, Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995, Process Biochem. 43(2008).

DOI: https://doi.org/10.1016/j.procbio.2008.04.013

[11] D.G. Cooper, B.G. Goldberg, Surface active agents from Bacillus species, Appl. Environ. Microbiol. 53(1987) 224-229.

[12] K. Jirasripongpun, The characterization of oil-degrading microorganisms from lubricating oil contaminated (scale) soil, Appl. Microbiol. 35(2002) 296-300.

DOI: https://doi.org/10.1046/j.1472-765x.2002.01184.x

[13] A. Saimmai, J. Kaewrueng, S. Maneerat, Used lubricating oil degradation and biosurfactant production by SC-9 consortia obtained from oil-contaminated soil, Ann. Microbiol. 62(2012) 1757-1767.

DOI: https://doi.org/10.1007/s13213-012-0434-7

[14] C.C. Lai, Y.C. Huanga, Y.H. Wei, J.S. Chang, Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil, J. Hazard Mater. 167(2009): 609-614.

DOI: https://doi.org/10.1016/j.jhazmat.2009.01.017

[15] M.E.M. Mabrouk, E.M. Youssif, S.A. Sabry, Biosurfactant production by a newly isolated soft coral-associated marine Bacillus sp. E34: Statistical optimization and characterization, Life Sci J. 11(2014) 756-768.

[16] K. Phetrong, A. H-Kittikun, S. Maneerat, Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7, Songklanakarin J. Sci. Technol. 29(2008) 769-779.

[17] P. Das, S. Mukherjee, R. Sen, Substrate dependent production of extracellular biosurfactant by a marine bacterium, Bioresour. Technol. 100(2008) 1015-1019.

DOI: https://doi.org/10.1016/j.biortech.2008.07.015

[18] L. Thimon, F. Peypoux, G. Michel, Interactions of surfactin, a biosurfactant from Bacillus subtilis with inorganic cations, Biotechnol. Lett. 14(1992) 713-718.

DOI: https://doi.org/10.1007/bf01021648

[19] M. Nitschke, G. Pastore, Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater, Bioresour. Technol. 97(2006) 336-341.

DOI: https://doi.org/10.1016/j.biortech.2005.02.044

[20] O. Pornsunthorntawee, P. Wongpanit, S. Chavadej, M. Abe, R. Rujiravanit, Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil, Bioresour. Technol. 99(2008).

DOI: https://doi.org/10.1016/j.biortech.2007.04.020

[21] R. S. Makkar, S. S. Cameotra, An update on the use of unconventional substrates for biosurfactant production and their new application, Appl. Microbiol. Biotechnol. 58(2002) 428-434.

DOI: https://doi.org/10.1007/s00253-001-0924-1

[22] M. Abouseouda, R. Maachib, A. Amranec, S. Bouderguaa, A. Nabia, Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens, Desalination. 223(2008) 143-151.

DOI: https://doi.org/10.1016/j.desal.2007.01.198

[23] T.B. Lotfabad, M. Shourian, R. Roostaazad, A.R. Najafabadi, M.R. Adelzadeh, K.A. Noghabi, An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran, Colloids Surf. B. 69(2009).

DOI: https://doi.org/10.1016/j.colsurfb.2008.11.018

[24] A. Fiechter, Biosurfactants: moving towards industrial application, Trends Biotechnol. 10(1992) 208-217.

DOI: https://doi.org/10.1016/0167-7799(92)90215-h

[25] M.S. Kuyukina, I.B. Ivshina, S.O. Makarov, L.V. Litvinenko, C.J. Cunningham, J.C. Philip, Effect of biosurfactants on crude oil desorption and mobilization in a soil system, Environ. Int. 31(2005) 155-61.

DOI: https://doi.org/10.1016/j.envint.2004.09.009