Preparation of Groundwater Sediment/Titanium Dioxide for Decomposition of Agricultural Residues

Abstract:

Article Preview

In this paper, the groundwater sediment/titanium dioxide (Gs/TiO2) were prepared via a conventional calcination process using groundwater sediment from natural resource at Pasao, Uttaradit province, Thailand and commercial TiO2 as starting materials. The as–prepared were characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity toward the decomposition of agricultural residues (diazinon) at 247 nm was demonstrated under visible light irradiation for 120 min. The maximum experimental decomposition efficiency was 73.6% with the rate constant of 0.0102 min–1 for prepared Gs/TiO2 photocatalyst.

Info:

Periodical:

Edited by:

Ruangdet Wongla

Pages:

122-129

Citation:

C. Soavakon et al., "Preparation of Groundwater Sediment/Titanium Dioxide for Decomposition of Agricultural Residues", Applied Mechanics and Materials, Vol. 886, pp. 122-129, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] Y. Zheng, C. Li, X. Meng, Z. Zhang, A conjugated composite of α–Fe2O3 and BiOBr with enhanced visible–light–induced photocatalytic activity, J. Mol. Catal. A–Chem. 421 (2016) 16–28.

DOI: https://doi.org/10.1016/j.molcata.2016.05.004

[2] K. Yao, P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, Y. Zhao, Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications, Catal. Today. 270 (2016) 51–58.

DOI: https://doi.org/10.1016/j.cattod.2015.10.026

[3] X. Liu, K. Chen, J.–J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties, J. Saudi Chem. Soc. 19 (2015) 479–484.

[4] J. Fang, J. Xu, J. Chen, X. Huang, X. Wang, Enhanced photocatalytic activity of molecular imprinted nano α–Fe2O3 by hydrothermal synthesis using methylene blue as structure–directing agent, Colloid. Surface. A. 508 (2016) 124–134.

DOI: https://doi.org/10.1016/j.colsurfa.2016.08.048

[5] F.A. Sheikh, R. Appiah–Ntiamoah, M.A. Zargar, J. Chandradass, W.–J. Chung, H. Kim, Photocatalytic properties of Fe2O3–modified rutile TiO2 nanofibers formed by electrospinning technique, Mater. Chem. Phys. 172 (2016) 62–68.

DOI: https://doi.org/10.1016/j.matchemphys.2015.12.060

[6] W. Sun, Q. Meng, L. Jing, L. He, X. Fu, Synthesis of long–lived photogenerated charge carriers of Si–modified α–Fe2O3 and its enhanced visible photocatalytic activity, Mater. Res. Bull. 49 (2014) 331–337.

DOI: https://doi.org/10.1016/j.materresbull.2013.09.008

[7] Z. Huang, F. He, Y. Feng, K. Zhao, A. Zheng, S. Chang, H. Li, Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier, Bioresource Technol. 140 (2013) 138–145.

DOI: https://doi.org/10.1016/j.biortech.2013.04.055

[8] M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α–Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014) 183–187.

DOI: https://doi.org/10.1016/j.apsusc.2014.08.193

[9] A.–M. Abdel–Wahab, A.–S. Al–Shirbini, O. Mohamed, O. Nasr, Photocatalytic degradation of paracetamol over magnetic flower–like TiO2/Fe2O3 core–shell nanostructures, J. Photoch. Photobio. A. 347 (2017) 186–198.

DOI: https://doi.org/10.1016/j.jphotochem.2017.07.030

[10] P.N.R. Kishore, P. Jeevanandam, A novel thermal decomposition approach for the synthesis of silica–iron oxide core–shell nanoparticles, J. Alloy. Compd. 522 (2012) 51– 62.

DOI: https://doi.org/10.1016/j.jallcom.2012.01.076

[11] K. Chitra, G. Annadurai, Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles, biocybern. Biomed. Eng. 34 (2014) 230–237.

DOI: https://doi.org/10.1016/j.bbe.2014.03.001

[12] Y.–H. Lien, T.–M. Wu, Preparation and characterization of thermosensitive polymers grafted onto silica–coated iron oxide nanoparticles, J. Colloid Interf. Sci. 326 (2008) 517–521.

DOI: https://doi.org/10.1016/j.jcis.2008.06.020

[13] M. Abbasi, R. Amiri, A.–K. Bordbar, E. Ranjbakhsh, A.–R. Khosropour, Improvement of the stability and activity of immobilized glucoseoxidase on modified iron oxide magnetic nanoparticles, Appl. Surf. Sci. 364 (2016) 752–757.

DOI: https://doi.org/10.1016/j.apsusc.2015.12.120

[14] S. Silvestri, E.L. Foletto, Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts, Ceram. Int. 43 (2017) 14057–14062.

[15] B. Szczepanik, P. Rogala, P.M. Słomkiewicz, D. Banaś, A. Kubala–Kukuś, I. Stabrawa, Synthesis, characterization and photocatalytic activity of TiO2–halloysite and Fe2O3–halloysite nanocomposites for photodegradation of chloroanilines in water, Catal. Today. 313 (2018).

DOI: https://doi.org/10.1016/j.clay.2017.08.016

[16] Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano–TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci. 311 (2014) 369–376.

DOI: https://doi.org/10.1016/j.apsusc.2014.05.070

[17] N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison, J. Environ. Chem. Eng. 5 (2017) 5707–5720.

DOI: https://doi.org/10.1016/j.jece.2017.10.052

[18] A.F. Hassan, H. Elhadidy, A.M. Abdel–Mohsen, Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons, J. Taiwan Inst. Chem. E. 75 (2017) 299–306.

DOI: https://doi.org/10.1016/j.jtice.2017.03.026

[19] J. Olejníček, M. Zlámal, Z. Hubička, R. Perekrestov, P. Kšírová, M. Čada, Š. Kment, J. Krýs, Fe–Ti alloy layer plasma deposition – Monitoring of plasma parameters and properties of deposited alloys, anodization and photoelectrochemical characterization, Catal. Today. 313 (2018).

DOI: https://doi.org/10.1016/j.cattod.2017.12.030

[20] X. Cao, S. Luo, C. Liu, J. Chen, Synthesis of Bentonite–Supported Fe2O3–Doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability, Adv. Powder Technol. 28 (2017) 993–999.

DOI: https://doi.org/10.1016/j.apt.2017.01.003