Preparation of Groundwater Sediment/Titanium Dioxide for Decomposition of Agricultural Residues

Article Preview

Abstract:

In this paper, the groundwater sediment/titanium dioxide (Gs/TiO2) were prepared via a conventional calcination process using groundwater sediment from natural resource at Pasao, Uttaradit province, Thailand and commercial TiO2 as starting materials. The as–prepared were characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity toward the decomposition of agricultural residues (diazinon) at 247 nm was demonstrated under visible light irradiation for 120 min. The maximum experimental decomposition efficiency was 73.6% with the rate constant of 0.0102 min–1 for prepared Gs/TiO2 photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-129

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zheng, C. Li, X. Meng, Z. Zhang, A conjugated composite of α–Fe2O3 and BiOBr with enhanced visible–light–induced photocatalytic activity, J. Mol. Catal. A–Chem. 421 (2016) 16–28.

DOI: 10.1016/j.molcata.2016.05.004

Google Scholar

[2] K. Yao, P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, Y. Zhao, Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications, Catal. Today. 270 (2016) 51–58.

DOI: 10.1016/j.cattod.2015.10.026

Google Scholar

[3] X. Liu, K. Chen, J.–J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties, J. Saudi Chem. Soc. 19 (2015) 479–484.

DOI: 10.1016/j.jscs.2015.06.009

Google Scholar

[4] J. Fang, J. Xu, J. Chen, X. Huang, X. Wang, Enhanced photocatalytic activity of molecular imprinted nano α–Fe2O3 by hydrothermal synthesis using methylene blue as structure–directing agent, Colloid. Surface. A. 508 (2016) 124–134.

DOI: 10.1016/j.colsurfa.2016.08.048

Google Scholar

[5] F.A. Sheikh, R. Appiah–Ntiamoah, M.A. Zargar, J. Chandradass, W.–J. Chung, H. Kim, Photocatalytic properties of Fe2O3–modified rutile TiO2 nanofibers formed by electrospinning technique, Mater. Chem. Phys. 172 (2016) 62–68.

DOI: 10.1016/j.matchemphys.2015.12.060

Google Scholar

[6] W. Sun, Q. Meng, L. Jing, L. He, X. Fu, Synthesis of long–lived photogenerated charge carriers of Si–modified α–Fe2O3 and its enhanced visible photocatalytic activity, Mater. Res. Bull. 49 (2014) 331–337.

DOI: 10.1016/j.materresbull.2013.09.008

Google Scholar

[7] Z. Huang, F. He, Y. Feng, K. Zhao, A. Zheng, S. Chang, H. Li, Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier, Bioresource Technol. 140 (2013) 138–145.

DOI: 10.1016/j.biortech.2013.04.055

Google Scholar

[8] M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α–Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014) 183–187.

DOI: 10.1016/j.apsusc.2014.08.193

Google Scholar

[9] A.–M. Abdel–Wahab, A.–S. Al–Shirbini, O. Mohamed, O. Nasr, Photocatalytic degradation of paracetamol over magnetic flower–like TiO2/Fe2O3 core–shell nanostructures, J. Photoch. Photobio. A. 347 (2017) 186–198.

DOI: 10.1016/j.jphotochem.2017.07.030

Google Scholar

[10] P.N.R. Kishore, P. Jeevanandam, A novel thermal decomposition approach for the synthesis of silica–iron oxide core–shell nanoparticles, J. Alloy. Compd. 522 (2012) 51– 62.

DOI: 10.1016/j.jallcom.2012.01.076

Google Scholar

[11] K. Chitra, G. Annadurai, Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles, biocybern. Biomed. Eng. 34 (2014) 230–237.

DOI: 10.1016/j.bbe.2014.03.001

Google Scholar

[12] Y.–H. Lien, T.–M. Wu, Preparation and characterization of thermosensitive polymers grafted onto silica–coated iron oxide nanoparticles, J. Colloid Interf. Sci. 326 (2008) 517–521.

DOI: 10.1016/j.jcis.2008.06.020

Google Scholar

[13] M. Abbasi, R. Amiri, A.–K. Bordbar, E. Ranjbakhsh, A.–R. Khosropour, Improvement of the stability and activity of immobilized glucoseoxidase on modified iron oxide magnetic nanoparticles, Appl. Surf. Sci. 364 (2016) 752–757.

DOI: 10.1016/j.apsusc.2015.12.120

Google Scholar

[14] S. Silvestri, E.L. Foletto, Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts, Ceram. Int. 43 (2017) 14057–14062.

DOI: 10.1016/j.ceramint.2017.07.140

Google Scholar

[15] B. Szczepanik, P. Rogala, P.M. Słomkiewicz, D. Banaś, A. Kubala–Kukuś, I. Stabrawa, Synthesis, characterization and photocatalytic activity of TiO2–halloysite and Fe2O3–halloysite nanocomposites for photodegradation of chloroanilines in water, Catal. Today. 313 (2018).

DOI: 10.1016/j.clay.2017.08.016

Google Scholar

[16] Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano–TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci. 311 (2014) 369–376.

DOI: 10.1016/j.apsusc.2014.05.070

Google Scholar

[17] N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison, J. Environ. Chem. Eng. 5 (2017) 5707–5720.

DOI: 10.1016/j.jece.2017.10.052

Google Scholar

[18] A.F. Hassan, H. Elhadidy, A.M. Abdel–Mohsen, Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons, J. Taiwan Inst. Chem. E. 75 (2017) 299–306.

DOI: 10.1016/j.jtice.2017.03.026

Google Scholar

[19] J. Olejníček, M. Zlámal, Z. Hubička, R. Perekrestov, P. Kšírová, M. Čada, Š. Kment, J. Krýs, Fe–Ti alloy layer plasma deposition – Monitoring of plasma parameters and properties of deposited alloys, anodization and photoelectrochemical characterization, Catal. Today. 313 (2018).

DOI: 10.1016/j.cattod.2017.12.030

Google Scholar

[20] X. Cao, S. Luo, C. Liu, J. Chen, Synthesis of Bentonite–Supported Fe2O3–Doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability, Adv. Powder Technol. 28 (2017) 993–999.

DOI: 10.1016/j.apt.2017.01.003

Google Scholar