[1]
Y. Zheng, C. Li, X. Meng, Z. Zhang, A conjugated composite of α–Fe2O3 and BiOBr with enhanced visible–light–induced photocatalytic activity, J. Mol. Catal. A–Chem. 421 (2016) 16–28.
DOI: 10.1016/j.molcata.2016.05.004
Google Scholar
[2]
K. Yao, P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, Y. Zhao, Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications, Catal. Today. 270 (2016) 51–58.
DOI: 10.1016/j.cattod.2015.10.026
Google Scholar
[3]
X. Liu, K. Chen, J.–J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties, J. Saudi Chem. Soc. 19 (2015) 479–484.
DOI: 10.1016/j.jscs.2015.06.009
Google Scholar
[4]
J. Fang, J. Xu, J. Chen, X. Huang, X. Wang, Enhanced photocatalytic activity of molecular imprinted nano α–Fe2O3 by hydrothermal synthesis using methylene blue as structure–directing agent, Colloid. Surface. A. 508 (2016) 124–134.
DOI: 10.1016/j.colsurfa.2016.08.048
Google Scholar
[5]
F.A. Sheikh, R. Appiah–Ntiamoah, M.A. Zargar, J. Chandradass, W.–J. Chung, H. Kim, Photocatalytic properties of Fe2O3–modified rutile TiO2 nanofibers formed by electrospinning technique, Mater. Chem. Phys. 172 (2016) 62–68.
DOI: 10.1016/j.matchemphys.2015.12.060
Google Scholar
[6]
W. Sun, Q. Meng, L. Jing, L. He, X. Fu, Synthesis of long–lived photogenerated charge carriers of Si–modified α–Fe2O3 and its enhanced visible photocatalytic activity, Mater. Res. Bull. 49 (2014) 331–337.
DOI: 10.1016/j.materresbull.2013.09.008
Google Scholar
[7]
Z. Huang, F. He, Y. Feng, K. Zhao, A. Zheng, S. Chang, H. Li, Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier, Bioresource Technol. 140 (2013) 138–145.
DOI: 10.1016/j.biortech.2013.04.055
Google Scholar
[8]
M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α–Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014) 183–187.
DOI: 10.1016/j.apsusc.2014.08.193
Google Scholar
[9]
A.–M. Abdel–Wahab, A.–S. Al–Shirbini, O. Mohamed, O. Nasr, Photocatalytic degradation of paracetamol over magnetic flower–like TiO2/Fe2O3 core–shell nanostructures, J. Photoch. Photobio. A. 347 (2017) 186–198.
DOI: 10.1016/j.jphotochem.2017.07.030
Google Scholar
[10]
P.N.R. Kishore, P. Jeevanandam, A novel thermal decomposition approach for the synthesis of silica–iron oxide core–shell nanoparticles, J. Alloy. Compd. 522 (2012) 51– 62.
DOI: 10.1016/j.jallcom.2012.01.076
Google Scholar
[11]
K. Chitra, G. Annadurai, Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles, biocybern. Biomed. Eng. 34 (2014) 230–237.
DOI: 10.1016/j.bbe.2014.03.001
Google Scholar
[12]
Y.–H. Lien, T.–M. Wu, Preparation and characterization of thermosensitive polymers grafted onto silica–coated iron oxide nanoparticles, J. Colloid Interf. Sci. 326 (2008) 517–521.
DOI: 10.1016/j.jcis.2008.06.020
Google Scholar
[13]
M. Abbasi, R. Amiri, A.–K. Bordbar, E. Ranjbakhsh, A.–R. Khosropour, Improvement of the stability and activity of immobilized glucoseoxidase on modified iron oxide magnetic nanoparticles, Appl. Surf. Sci. 364 (2016) 752–757.
DOI: 10.1016/j.apsusc.2015.12.120
Google Scholar
[14]
S. Silvestri, E.L. Foletto, Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts, Ceram. Int. 43 (2017) 14057–14062.
DOI: 10.1016/j.ceramint.2017.07.140
Google Scholar
[15]
B. Szczepanik, P. Rogala, P.M. Słomkiewicz, D. Banaś, A. Kubala–Kukuś, I. Stabrawa, Synthesis, characterization and photocatalytic activity of TiO2–halloysite and Fe2O3–halloysite nanocomposites for photodegradation of chloroanilines in water, Catal. Today. 313 (2018).
DOI: 10.1016/j.clay.2017.08.016
Google Scholar
[16]
Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano–TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci. 311 (2014) 369–376.
DOI: 10.1016/j.apsusc.2014.05.070
Google Scholar
[17]
N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison, J. Environ. Chem. Eng. 5 (2017) 5707–5720.
DOI: 10.1016/j.jece.2017.10.052
Google Scholar
[18]
A.F. Hassan, H. Elhadidy, A.M. Abdel–Mohsen, Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons, J. Taiwan Inst. Chem. E. 75 (2017) 299–306.
DOI: 10.1016/j.jtice.2017.03.026
Google Scholar
[19]
J. Olejníček, M. Zlámal, Z. Hubička, R. Perekrestov, P. Kšírová, M. Čada, Š. Kment, J. Krýs, Fe–Ti alloy layer plasma deposition – Monitoring of plasma parameters and properties of deposited alloys, anodization and photoelectrochemical characterization, Catal. Today. 313 (2018).
DOI: 10.1016/j.cattod.2017.12.030
Google Scholar
[20]
X. Cao, S. Luo, C. Liu, J. Chen, Synthesis of Bentonite–Supported Fe2O3–Doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability, Adv. Powder Technol. 28 (2017) 993–999.
DOI: 10.1016/j.apt.2017.01.003
Google Scholar