[1]
H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dye) alizarin S, crocein orange G, methyl red, congo red, methylene blue in water by UV-irradiated titania, Appl. Catal. B : Environ. 39 (2002) 75–90.
DOI: 10.1016/s0926-3373(02)00078-4
Google Scholar
[2]
A. Mills, Heterogeneous catalysis: from electronic processes to photocatalysis: A special issue dedicated to Jean-Marie Herrmann, Appl. Catal. B : Environ. 128 (2012) 144–149.
Google Scholar
[3]
T.J. Kuo, C.N. Lin, C.L. Kuo, Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts, Chem. Mater. 19 (2007) 5143–5147.
DOI: 10.1021/cm071568a
Google Scholar
[4]
P. Sangpour, F. Hashemi, A.Z., Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems:, J. Phys. Chem. C. 114 (2010) 13955–13961.
DOI: 10.1021/jp910454r
Google Scholar
[5]
M.S. Akhtar, M.A. Khan, M.S. Jeon, O.B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells, Electrochim. Acta. 53 (2008) 1395–1361.
DOI: 10.1016/j.electacta.2008.05.055
Google Scholar
[6]
Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Ultraviolet ZnO nanorod photosensors, Langmuir. 26 (2014) 55–61. [7]C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/ZnO composites with p/n heterojunction, ACS Nano. 78 (2014) 587–592.
DOI: 10.1021/la902171j
Google Scholar
[8]
N.D. Dung, C.T. Son, P.V. Loc, N.H. Cuong, P. T. Kien, P.T. Huy, N.N. Ha, Magnetic properties of sol-gel synthesized C-doped ZnO nanoparticles, J. Alloy & Compnd. (2016) 87–90.
DOI: 10.1016/j.jallcom.2016.01.208
Google Scholar
[9]
F. Guoping, D. Lue, In2S3 nanosheets decorated ZnO nanofiber water purification performance of photocatalyst in structural and photo-responsivity aspects, Appl. Surf. Sci. 38 (2014) 55–61.
Google Scholar
[10]
S. Wang, Y. Guan, L. Wang, H. He, Fabrication of a bifunctional of BiOI/Ag3VO4 with high photocatalysis for efficient treatment of wastewater, App. Catal. B: Environ. 168 (2015) 448–457.
DOI: 10.1016/j.apcatb.2014.12.047
Google Scholar
[11]
N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, J. Colliod Interface Sci. 417 (2014) 402–409.
DOI: 10.1016/j.jcis.2013.11.072
Google Scholar
[12]
Y. Lu, Guo Liu, J. Zhang, Z. Feng, C.L. Li, Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B, Chin. J. Catal. 37 (2016) 349–358.
DOI: 10.1016/s1872-2067(15)61023-3
Google Scholar
[13]
C. Xing, Z. Wu, D. Jiang, M. Chen, Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity, J. Colliod & Interface Sci. 433 (2014) 9-15.
Google Scholar
[14]
J. Jiang, S. Li, Y. Lin, Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over In2S3-ZnO composites, J. Colloid Interf. Sci. 494 (2017) 130-138.
DOI: 10.1016/j.jcis.2017.01.064
Google Scholar
[15]
D. Kievena, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, M.L. Steiner, Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber, Appl. Phys. Lett. 92 (2008) 153107-153115.
DOI: 10.1063/1.2909576
Google Scholar
[16]
K. Kato, H. Omoto, T. Tomioka, A. Takamatsu, Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering, Sol. Energy Mater. Sol. 95 (2011) 2352–2356.
DOI: 10.1016/j.solmat.2011.04.005
Google Scholar
[17]
D. Sahu, N.R. Panda, A.K. Panda, Enhanced UV absorbance and photoluminescence properties of ultrasound assisted synthesized gold doped ZnO nanorods, Opt. Mater. 36 (2014) 1402–1407.
DOI: 10.1016/j.optmat.2014.03.041
Google Scholar
[18]
S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpa, M. Swaminat- han, Facile construction of heterostructured BiVO4-ZnO and its dual application of greater solar photocatalytic activity and self-cleaning property, Ind. Eng. Chem. Res. 53 (2014) 8346–8356.
DOI: 10.1021/ie404287m
Google Scholar
[19]
M. Azadi, A.H. Yangjeh, Microwave-assisted facile one-pot method for preparation of BiOI-ZnO nanocomposites as novel dye adsorbents by synergistic collaboration, 12 (2015) 909–919.
DOI: 10.1007/s13738-014-0555-y
Google Scholar
[20]
P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles, Eng J. 16 (2012) 43–47.
DOI: 10.4186/ej.2012.16.3.143
Google Scholar
[21]
Q. P. Zhang, X. N. Xu, Y. T. Liu, M. Xu, S. H. Deng, Y. Chen, H. Yuan, F. Yu, Y. Huang, K. Zhao, S. Xu, G. Xiong, A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals, Sci. Rep. 7 (2017) 4642–46432.
DOI: 10.1038/srep46424
Google Scholar
[22]
U. Lamdab, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, InVO4-BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue, Catal. Today. 278 (2016) 291–302.
DOI: 10.1016/j.cattod.2015.11.037
Google Scholar
[23]
A. Di, Mauro, M.E. Fragala, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: from thin films to nanostructures, Mater. Sci. Semicond. Process. 69 (2017) 44–51.
DOI: 10.1016/j.mssp.2017.03.029
Google Scholar
[24]
C. Chang, H. Yang, S. Lu, Core/shell p-BiOI/n-β-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency, J. Alloy. Compd. 738 (2018) 138–144.
DOI: 10.1016/j.jallcom.2017.12.145
Google Scholar
[25]
H.X. Bai, L.X. Zhang, Y.C. Zhang, Simple synthesis of urchin-like In2S3 and In2O3 nanostructure, Mater. Lett. 63 (2009) 823–825.
DOI: 10.1016/j.matlet.2009.01.023
Google Scholar
[26]
F. Yan, J. Tian, W. Guan, Z. Qiao, W. Li, J. You, Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance Appl. Catal. B : Environ. 202 (2017) 84–94.
DOI: 10.1016/j.apcatb.2016.09.017
Google Scholar
[27]
F. Wang, Z. Jin, Y. Jiang, H.G. Ellen, M. Bonn, S. Nee, L.T. Dmitry, R. Amal, Probing the charge separation process on In2S3/Pt-TiO2 nanocomposites for boosted visible-light photocatalytic hydrogen production, Appl. Catal. B : Environ. 198 (2016) 25–31.
DOI: 10.1016/j.apcatb.2016.05.048
Google Scholar
[28]
L. Zhang, W. Zhang, H. Yang, W. Fu, M. Li, H. Zhao, J. Ma, Hydrothermal synthesis and photoelectrochemical properties of In2S3 thin films with a wedgelike structure, Appl. Surf. Sci. 258 (2012) 9018–9024.
DOI: 10.1016/j.apsusc.2012.05.141
Google Scholar
[29]
P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production from aqueous Na2SO3 and Na2S solution with B/CuO/ZnO under visible light irradiation, RSC Adv. 43 (2013) 20429–20436.
DOI: 10.1039/c3ra42525h
Google Scholar