Influence of Dental Implant Design on Stress Distribution and Micromotion of Mandibular Bone

Article Preview

Abstract:

This research was conducted to provide a feasible method for reconstructing the 3D model of mandibular bone to undergo finite element analysis to investigate von Mises stress, deformation and shear stress located at the cortical bone, cancellous one and neck implant of the proposed dental implant design. Dental implant has become a significant remedial approach but although the success rate is high, the fixture failure may happen when there are insufficient host tissues to initiate and sustain the osseointegration. Computerised Tomography scan was conducted to generate head images for bone reconstruction process. MIMICS software and 3-matic software were used to develop the 3D mandibular model. The reconstructed mandibular model was then assembled with five different 3D models of dental implants. Feasible boundary conditions and material properties were assigned to the developed muscle areas and joints. The highest performance design with the best responses was the design B with the value for the von Mises stress for the neck implant, cortical and cancellous bone were 7.53 MPa, 16.91 MPa and 1.34 MPa respectively. The values for the maximum of micromotion for the neck implant, cortical and cancellous bone of design B were 20.60 μm, 21.17 μm and 5.83 μm respectively. Shear stress for neck implant, cortical and cancellous bone for this design were 0.15 MPa, 4.74 MPa and 1.54 MPa respectively. The design with a cone shaped hole which is design B was the proper design when compared with other designs in terms of von Misses stress, deformations and shear stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-93

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Standring, The anatomical basis of clinical practice, 41st ed. Elsevier, (2005).

Google Scholar

[2] J. H. Keyak, J. M. Meagher, H. B. Skinner, and C. D. Mote, Automated three-dimensional finite element modelling of bone: a new method,, Journal of Biomedical Engineering, vol. 12, no. 5, p.389–397, (1990).

DOI: 10.1016/0141-5425(90)90022-f

Google Scholar

[3] G. J. Pruim, H. J. de Jongh, and J. J. ten Bosch, Forces acting on the mandible during bilateral static bite at different bite force levels,, Journal of Biomechanics, vol. 13, no. 9, p.755–763, (1980).

DOI: 10.1016/0021-9290(80)90237-7

Google Scholar

[4] S. A. Hadi, N. Ashfaq, A. Bey, and S. Khan, Biological factors responsible for failure of osseointegration in oral implants,, Biology and Medicine, vol. 3, no. 2, p.164–170, (2011).

Google Scholar

[5] Implants are The Clear Choice for Teeth Replacement., [Online]. Available: http://www.midwestdentalassociates.net/implant-dentist-aurora.html. [Accessed: 18-Oct-2014].

Google Scholar

[6] Keystone Inc, Renova® Dental Implant System,, 2017. [Online]. Available: http://www.keystonedental.com/renova. [Accessed: 02-Apr-2017].

Google Scholar

[7] U. S. Ca, Biomet 3i Product Catalog,, 2012. [Online]. Available: http://www.biomet3i.com/. [Accessed: 02-Apr-2017].

Google Scholar

[8] Noble Biocare, NobelActive® Product Overview., [Online]. Available: https://www.nobelbiocare.com/ie/en/home/products-and-solutions/library/catalogs.html. [Accessed: 02-Apr-2017].

Google Scholar

[9] Osstem Implant, SS System Catalog,, 2014. [Online]. Available: http://en.osstem.com/data/pro/SS.pdf. [Accessed: 02-Apr-2017].

Google Scholar

[10] Zimmer Dental Inc, Spline Reliance (3.25)." [Online]. Available: http://osseosource.com/dental-implants/product_info.php,products_id=257. [Accessed: 02-Apr-2017].

Google Scholar

[11] Zimmer Dental Inc, SwissPlus® Implant System,, 2007. [Online]. Available: http://www.koldental.com.pl/data/download/implanty/SwissPlus.pdf. [Accessed: 02-Apr-2017].

Google Scholar

[12] T. I. T. of Implantology, Straumann Product catalog,, 2014. [Online]. Available: http://www.gildedplanet.com/PDF/Product Catolog Jan_2005.pdf. [Accessed: 11-Apr-2017].

Google Scholar

[13] S. Şahin, M. C. Çehreli, and E. Yalçin, The influence of functional forces on the biomechanics of implant-supported prostheses - A review,, Journal of Dentistry, vol. 30, no. 7–8, p.271–282, (2002).

DOI: 10.1016/s0300-5712(02)00065-9

Google Scholar

[14] H.-S. Kim, J.-Y. Park, N.-E. Kim, Y.-S. Shin, J.-M. Park, and Y.-S. Chun, Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication,, The Journal of Advanced Prosthodontics, vol. 4, no. 4, p.218, (2012).

DOI: 10.4047/jap.2012.4.4.218

Google Scholar

[15] S. H. Chang, C. L. Lin, S. S. Hsue, Y. S. Lin, and S. R. Huang, Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla,, Medical Engineering and Physics, vol. 34, no. 2, p.153–160, (2012).

DOI: 10.1016/j.medengphy.2011.07.005

Google Scholar

[16] W. C. C. Lee and M. Zhang, Design of monolimb using finite element modelling and statistics-based Taguchi method,, Clinical Biomechanics, vol. 20, no. 7, p.759–766, (2005).

DOI: 10.1016/j.clinbiomech.2005.03.015

Google Scholar

[17] R. M. Wazen, J. A. Currey, H. Guo, J. B. Brunski, J. A. Helms, and A. Nanci, Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces,, Acta Biomaterialia, vol. 9, no. 5, p.6663–6674, (2013).

DOI: 10.1016/j.actbio.2013.01.014

Google Scholar

[18] L. A. Spyrou and N. Aravas, Muscle and Tendon Tissues: Constitutive Modeling and Computational Issues,, Journal of Applied Mechanics, vol. 78, no. 4, p.041015, (2011).

DOI: 10.1115/1.4003741

Google Scholar

[19] J. M. Reina, J. M. García-Aznar, J. Domínguez, and M. Doblaré, Numerical estimation of bone density and elastic constants distribution in a human mandible,, Journal of Biomechanics, vol. 40, no. 4, p.828–836, (2007).

DOI: 10.1016/j.jbiomech.2006.03.007

Google Scholar

[20] M. S. Commisso, J. Martínez-Reina, J. Ojeda, and J. Mayo, Finite element analysis of the human mastication cycle,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 41, p.23–35, (2015).

DOI: 10.1016/j.jmbbm.2014.09.022

Google Scholar

[21] B. Şimşek, E. Erkmen, D. Yilmaz, and A. Eser, Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: A 3D finite element analysis,, Medical Engineering & Physics, vol. 28, no. 3, p.199–213, (2006).

DOI: 10.1016/j.medengphy.2005.04.025

Google Scholar

[22] K. M. Norio Inou, Yuzuru Iioka, Hiroshi Fujiwara, Functional Adaption of Mandibular Bone,, Computational Biomechanics, p.23–42, (1996).

DOI: 10.1007/978-4-431-66951-7_2

Google Scholar

[23] S.-G. Kim, W.-K. Kim, J.-C. Park, and H.-J. Kim, A comparative study of osseointegration of Avana implants in a demineralized freeze-dried bone alone or with platelet-rich plasma,, Journal of Oral and Maxillofacial Surgery, vol. 60, no. 9, p.1018–1025, (2002).

DOI: 10.1053/joms.2002.34413

Google Scholar

[24] M. Cruz, A. F. Lourenço, E. M. Toledo, L. P. da Silva Barra, A. C. de Castro Lemonge, and T. Wassall, Finite element stress analysis of cuneiform and cylindrical threaded implant geometries.,, Technology and health care : official journal of the European Society for Engineering and Medicine, vol. 14, no. 4–5, p.421–438, (2006).

DOI: 10.3233/thc-2006-144-523

Google Scholar

[25] G. J. Pruim, H. J. de Jongh, and J. J. ten Bosch, Forces acting on the mandible during bilateral static bite at different bite force levels,, Journal of Biomechanics, vol. 13, no. 9, p.755–763, (1980).

DOI: 10.1016/0021-9290(80)90237-7

Google Scholar

[26] H. M. Frost, Bone 'mass' and the 'mechanostat': A proposal,, The Anatomical Record, vol. 219, no. 1, p.1–9, (1987).

DOI: 10.1002/ar.1092190104

Google Scholar

[27] G. Dubois, M. Daas, A. S. Bonnet, and P. Lipinski, Biomechanical study of a prosthetic solution based on an angled abutment: Case of upper lateral incisor,, Medical Engineering and Physics, vol. 29, no. 9, p.989–998, (2007).

DOI: 10.1016/j.medengphy.2006.10.017

Google Scholar

[28] M. Cruz, T. Wassall, E. M. Toledo, L. P. da Silva Barra, and S. Cruz, Finite element stress analysis of dental prostheses supported by straight and angled implants,, The Journal of Prosthetic Dentistry, vol. 104, no. 5, p.346, (2010).

DOI: 10.1016/s0022-3913(10)60154-0

Google Scholar

[29] M. S. Commisso, J. Martínez-Reina, J. Ojeda, and J. Mayo, Finite element analysis of the human mastication cycle,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 41, p.23–35, (2015).

DOI: 10.1016/j.jmbbm.2014.09.022

Google Scholar

[30] H. Hasani, S. A. Tabatabaei, and G. Amiri, Grey Relational Analysis to Determine the Optimum Process Parameters for Open-End Spinning Yarns,, Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, p.81–86, (2012).

DOI: 10.1177/155892501200700212

Google Scholar

[31] Z. Arabshahi, J. Kashani, M. R. A. Kadir, and A. Azari, Influence of thickness and contact surface geometry of condylar stem of TMJ implant on its stability,, Physics Procedia, vol. 22, p.414–419, (2011).

DOI: 10.1016/j.phpro.2011.11.065

Google Scholar

[32] Ridzwan, M. I. Z., Shuib, S., Hassan, A. Y., & Shokri, A. A. (2006). Effects of increasing load transferred in femur to the bone-implant interface. Journal of Applied Sciences, 6(1), 183-189.

DOI: 10.3923/jas.2006.183.189

Google Scholar

[33] M. Nizam Ahmad, Solehuddin Shuib, A.Y. Hassan, A.A. Shokri, M.I.Z. Ridzwan and M.N. Mohd. Ibrahim, 2007. Application of Multi Criteria Optimization Method in Implant Design to Reduce Stress Shielding. Journal of Applied Sciences, 7: 349-355.

DOI: 10.3923/jas.2007.349.355

Google Scholar

[34] Solehuddin Shuib, M.I.Z. Ridzwan, M.N. Mohamad Ibrahim and C.J. Tan, 2007. Analysis of Orthopedic Screws for Bone Fracture Fixations with Finite Element Method. Journal of Applied Sciences, 7: 1748-1754.

DOI: 10.3923/jas.2007.1748.1754

Google Scholar