[1]
S. Standring, The anatomical basis of clinical practice, 41st ed. Elsevier, (2005).
Google Scholar
[2]
J. H. Keyak, J. M. Meagher, H. B. Skinner, and C. D. Mote, Automated three-dimensional finite element modelling of bone: a new method,, Journal of Biomedical Engineering, vol. 12, no. 5, p.389–397, (1990).
DOI: 10.1016/0141-5425(90)90022-f
Google Scholar
[3]
G. J. Pruim, H. J. de Jongh, and J. J. ten Bosch, Forces acting on the mandible during bilateral static bite at different bite force levels,, Journal of Biomechanics, vol. 13, no. 9, p.755–763, (1980).
DOI: 10.1016/0021-9290(80)90237-7
Google Scholar
[4]
S. A. Hadi, N. Ashfaq, A. Bey, and S. Khan, Biological factors responsible for failure of osseointegration in oral implants,, Biology and Medicine, vol. 3, no. 2, p.164–170, (2011).
Google Scholar
[5]
Implants are The Clear Choice for Teeth Replacement., [Online]. Available: http://www.midwestdentalassociates.net/implant-dentist-aurora.html. [Accessed: 18-Oct-2014].
Google Scholar
[6]
Keystone Inc, Renova® Dental Implant System,, 2017. [Online]. Available: http://www.keystonedental.com/renova. [Accessed: 02-Apr-2017].
Google Scholar
[7]
U. S. Ca, Biomet 3i Product Catalog,, 2012. [Online]. Available: http://www.biomet3i.com/. [Accessed: 02-Apr-2017].
Google Scholar
[8]
Noble Biocare, NobelActive® Product Overview., [Online]. Available: https://www.nobelbiocare.com/ie/en/home/products-and-solutions/library/catalogs.html. [Accessed: 02-Apr-2017].
Google Scholar
[9]
Osstem Implant, SS System Catalog,, 2014. [Online]. Available: http://en.osstem.com/data/pro/SS.pdf. [Accessed: 02-Apr-2017].
Google Scholar
[10]
Zimmer Dental Inc, Spline Reliance (3.25)." [Online]. Available: http://osseosource.com/dental-implants/product_info.php,products_id=257. [Accessed: 02-Apr-2017].
Google Scholar
[11]
Zimmer Dental Inc, SwissPlus® Implant System,, 2007. [Online]. Available: http://www.koldental.com.pl/data/download/implanty/SwissPlus.pdf. [Accessed: 02-Apr-2017].
Google Scholar
[12]
T. I. T. of Implantology, Straumann Product catalog,, 2014. [Online]. Available: http://www.gildedplanet.com/PDF/Product Catolog Jan_2005.pdf. [Accessed: 11-Apr-2017].
Google Scholar
[13]
S. Şahin, M. C. Çehreli, and E. Yalçin, The influence of functional forces on the biomechanics of implant-supported prostheses - A review,, Journal of Dentistry, vol. 30, no. 7–8, p.271–282, (2002).
DOI: 10.1016/s0300-5712(02)00065-9
Google Scholar
[14]
H.-S. Kim, J.-Y. Park, N.-E. Kim, Y.-S. Shin, J.-M. Park, and Y.-S. Chun, Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication,, The Journal of Advanced Prosthodontics, vol. 4, no. 4, p.218, (2012).
DOI: 10.4047/jap.2012.4.4.218
Google Scholar
[15]
S. H. Chang, C. L. Lin, S. S. Hsue, Y. S. Lin, and S. R. Huang, Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla,, Medical Engineering and Physics, vol. 34, no. 2, p.153–160, (2012).
DOI: 10.1016/j.medengphy.2011.07.005
Google Scholar
[16]
W. C. C. Lee and M. Zhang, Design of monolimb using finite element modelling and statistics-based Taguchi method,, Clinical Biomechanics, vol. 20, no. 7, p.759–766, (2005).
DOI: 10.1016/j.clinbiomech.2005.03.015
Google Scholar
[17]
R. M. Wazen, J. A. Currey, H. Guo, J. B. Brunski, J. A. Helms, and A. Nanci, Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces,, Acta Biomaterialia, vol. 9, no. 5, p.6663–6674, (2013).
DOI: 10.1016/j.actbio.2013.01.014
Google Scholar
[18]
L. A. Spyrou and N. Aravas, Muscle and Tendon Tissues: Constitutive Modeling and Computational Issues,, Journal of Applied Mechanics, vol. 78, no. 4, p.041015, (2011).
DOI: 10.1115/1.4003741
Google Scholar
[19]
J. M. Reina, J. M. García-Aznar, J. Domínguez, and M. Doblaré, Numerical estimation of bone density and elastic constants distribution in a human mandible,, Journal of Biomechanics, vol. 40, no. 4, p.828–836, (2007).
DOI: 10.1016/j.jbiomech.2006.03.007
Google Scholar
[20]
M. S. Commisso, J. Martínez-Reina, J. Ojeda, and J. Mayo, Finite element analysis of the human mastication cycle,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 41, p.23–35, (2015).
DOI: 10.1016/j.jmbbm.2014.09.022
Google Scholar
[21]
B. Şimşek, E. Erkmen, D. Yilmaz, and A. Eser, Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: A 3D finite element analysis,, Medical Engineering & Physics, vol. 28, no. 3, p.199–213, (2006).
DOI: 10.1016/j.medengphy.2005.04.025
Google Scholar
[22]
K. M. Norio Inou, Yuzuru Iioka, Hiroshi Fujiwara, Functional Adaption of Mandibular Bone,, Computational Biomechanics, p.23–42, (1996).
DOI: 10.1007/978-4-431-66951-7_2
Google Scholar
[23]
S.-G. Kim, W.-K. Kim, J.-C. Park, and H.-J. Kim, A comparative study of osseointegration of Avana implants in a demineralized freeze-dried bone alone or with platelet-rich plasma,, Journal of Oral and Maxillofacial Surgery, vol. 60, no. 9, p.1018–1025, (2002).
DOI: 10.1053/joms.2002.34413
Google Scholar
[24]
M. Cruz, A. F. Lourenço, E. M. Toledo, L. P. da Silva Barra, A. C. de Castro Lemonge, and T. Wassall, Finite element stress analysis of cuneiform and cylindrical threaded implant geometries.,, Technology and health care : official journal of the European Society for Engineering and Medicine, vol. 14, no. 4–5, p.421–438, (2006).
DOI: 10.3233/thc-2006-144-523
Google Scholar
[25]
G. J. Pruim, H. J. de Jongh, and J. J. ten Bosch, Forces acting on the mandible during bilateral static bite at different bite force levels,, Journal of Biomechanics, vol. 13, no. 9, p.755–763, (1980).
DOI: 10.1016/0021-9290(80)90237-7
Google Scholar
[26]
H. M. Frost, Bone 'mass' and the 'mechanostat': A proposal,, The Anatomical Record, vol. 219, no. 1, p.1–9, (1987).
DOI: 10.1002/ar.1092190104
Google Scholar
[27]
G. Dubois, M. Daas, A. S. Bonnet, and P. Lipinski, Biomechanical study of a prosthetic solution based on an angled abutment: Case of upper lateral incisor,, Medical Engineering and Physics, vol. 29, no. 9, p.989–998, (2007).
DOI: 10.1016/j.medengphy.2006.10.017
Google Scholar
[28]
M. Cruz, T. Wassall, E. M. Toledo, L. P. da Silva Barra, and S. Cruz, Finite element stress analysis of dental prostheses supported by straight and angled implants,, The Journal of Prosthetic Dentistry, vol. 104, no. 5, p.346, (2010).
DOI: 10.1016/s0022-3913(10)60154-0
Google Scholar
[29]
M. S. Commisso, J. Martínez-Reina, J. Ojeda, and J. Mayo, Finite element analysis of the human mastication cycle,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 41, p.23–35, (2015).
DOI: 10.1016/j.jmbbm.2014.09.022
Google Scholar
[30]
H. Hasani, S. A. Tabatabaei, and G. Amiri, Grey Relational Analysis to Determine the Optimum Process Parameters for Open-End Spinning Yarns,, Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, p.81–86, (2012).
DOI: 10.1177/155892501200700212
Google Scholar
[31]
Z. Arabshahi, J. Kashani, M. R. A. Kadir, and A. Azari, Influence of thickness and contact surface geometry of condylar stem of TMJ implant on its stability,, Physics Procedia, vol. 22, p.414–419, (2011).
DOI: 10.1016/j.phpro.2011.11.065
Google Scholar
[32]
Ridzwan, M. I. Z., Shuib, S., Hassan, A. Y., & Shokri, A. A. (2006). Effects of increasing load transferred in femur to the bone-implant interface. Journal of Applied Sciences, 6(1), 183-189.
DOI: 10.3923/jas.2006.183.189
Google Scholar
[33]
M. Nizam Ahmad, Solehuddin Shuib, A.Y. Hassan, A.A. Shokri, M.I.Z. Ridzwan and M.N. Mohd. Ibrahim, 2007. Application of Multi Criteria Optimization Method in Implant Design to Reduce Stress Shielding. Journal of Applied Sciences, 7: 349-355.
DOI: 10.3923/jas.2007.349.355
Google Scholar
[34]
Solehuddin Shuib, M.I.Z. Ridzwan, M.N. Mohamad Ibrahim and C.J. Tan, 2007. Analysis of Orthopedic Screws for Bone Fracture Fixations with Finite Element Method. Journal of Applied Sciences, 7: 1748-1754.
DOI: 10.3923/jas.2007.1748.1754
Google Scholar