[1]
K. Venkata Ratnam, H. Manjunatha, S. Janardan, K. Chandra Babu Naidu, S. Ramesh, Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review, Sensors International. (2020).
DOI: 10.1016/j.sintl.2020.100047
Google Scholar
[2]
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review, Sensors. (2019).
DOI: 10.3390/s19092037
Google Scholar
[3]
K. Gururaj and B. Swamy, Electrochemical Synthesis of Titanium Nano Particles at Carbon Paste Electrodes and Its Applications as an Electrochemical Sensor for the Determination of Acetaminophen in Paracetamol Tablets, Soft Nanoscience Letters. (2013) 20-22.
DOI: 10.4236/snl.2013.34a006
Google Scholar
[4]
Mohammad Reza Aflatoonian, Somayeh Tajik, Behnaz Aflatoonian, Mehri-Saddat Ekrami-Kakhki, Kouros Divsalar, Iran Sheikh Shoaie, Mahdieh Sheikhshoaie, Fariba Garkani Nejad, Development of a new electrochemical sensor based on modified carbon paste electrode for simultaneous determination of norepinephrine and acetaminophen in real samples. Eurasian Chemical Communications. (2020) 548-562.
DOI: 10.33945/sami/ecc.2020.4.11
Google Scholar
[5]
Nada F. Atta, Ahmed Galalz and Shereen M. Azab, Electrochemical Determination of Neurotransmitters Using Gold Nanoparticles on Nafion/Carbon Paste Modified Electrode, Journal of The Electrochemical Society. (2012).
DOI: 10.1149/2.004210jes
Google Scholar
[6]
Nada F. Atta, Shimaa M. Ali, Ekram H. El-Ads, and A. Galalz, The Electrochemistry and Determination of Some Neurotransmitters at SrPdO3 Modified Graphite Electrode, Journal of The Electrochemical Society. (2013).
DOI: 10.1149/2.022307jes
Google Scholar
[7]
Aparna, T.K., Sivasubramanian, R. NiFe2O4NiFe2O4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid, J Chem Sci. (2018).
DOI: 10.1007/s12039-017-1413-0
Google Scholar
[8]
Sean Barry Alan O'Riordan, Electrochemical Nanosensors: Advances and Applications, DOVEPRESS. (2016) 1-14.
Google Scholar
[9]
Vinayak Adimule, Anusha Suryavanshi, Santosh Nandi, Synthesis, Characterization and Impedance Studies of Novel Nanocomposites of Gadolinium Titanate, IOP Conference Series: Materials Science and Engineering. (2020) 012099.
DOI: 10.1088/1757-899x/872/1/012099
Google Scholar
[10]
Vinayak Adimule, Debdas Bhowmik, Anusha Suryavanshi, Synthesis, Characterization of Cr-Gd Nanocomposites doped with Yttrium Possessing Dielectric Properties, IOP Conference Series: Materials Science and Engineering. (2019) 012032.
DOI: 10.1088/1757-899x/577/1/012032
Google Scholar
[11]
Vinayak Adimule, K.S. Adarsh, Characterization and microbial resistance properties of titanium dioxide nanoparticles in food products, J. Nanosci. Tech. (2017) 240–241.
Google Scholar
[12]
Vinayak Adimule, Adarsh K S, Synthesis, characterization of Sr-Gd Nanocomposites doped with Zirconium possessing electrical and optical properties, AIP Conference Proceedings. (2018).
DOI: 10.1063/1.5047719
Google Scholar
[13]
Anusha Suryavanshi, Vinayak Adimule, and Santosh S. Nandi, Synthesis, Impedance, and Current–Voltage Characteristics of Strontium-Manganese Titanate Hybrid Nanoparticles, Macromol. Symp. (2020).
DOI: 10.1002/masy.202000002
Google Scholar
[14]
Vinayak Adimule, R G Revaiah, Santosh Nandi, and Adarsha Jagadeesha, Synthesis, Characterization of Cr Doped TeO2 Nano structures and its Application as EGFET PH Sensor, Electroanalysis. (2021) 579-590.
DOI: 10.1002/elan.202060329
Google Scholar
[15]
Rayappa Shrinivas Mahale, Shamanth V, Sharath P.C, Review on Processing and Characterization of Duplex Stainless Steels, Lecture Notes in Mechanical Engineering Springer Singapore. (2021) 219-229.
DOI: 10.1007/978-981-15-7557-0_20
Google Scholar
[16]
Rayappa Shrinivas Mahale, V. Shamanth, P.C. Sharath, R. Shashanka, K. Hemanth, A Review on Spark Plasma Sintering of Duplex Stainless Steels, Materials Today: Proceedings. (2021) 138-144.
DOI: 10.1016/j.matpr.2020.10.357
Google Scholar
[17]
Adarsh Patil, Nagaraj R. Banapurmath, Anand M. Hunashyal, Vinod Kumar V. Meti, Rayappa Shrinivas Mahale, Development and Performance Analysis of Novel Cast AA7076-Graphene Amine-Carbon Fiber Hybrid Nanocomposites for Structural Applications, Biointerface Research in Applied Chemistry. (2022) 1480-1489.
DOI: 10.33263/briac122.14801489
Google Scholar
[18]
Rayappa Shrinivas Mahale, Rajendrachari Shashanka, Shamanth Vasanth, Vinaykumar R, Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes, Biointerface Research in Applied Chemistry. (2022) 4557-4566.
DOI: 10.33263/briac124.45574566
Google Scholar
[19]
Shashanka R, Kumara Swamy B.E, Simultaneous Electro-Generation and Electro-Deposition of Copper Oxide Nanoparticles on Glassy Carbon Electrode and its Sensor Application. SN Appl. Sci. (2020).
DOI: 10.1007/s42452-020-2785-1
Google Scholar
[20]
Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Mohadeseh Safaei, Kaiqiang Zhang, Quyet Van Le, Rajender S. Varma, Ho Won Jang, Mohammadreza Shokouhimehr, Developments and Applications of Nanomaterial based Carbon Paste Electrode, RSC Adv. (2020), 21561-21581.
DOI: 10.1039/d0ra03672b
Google Scholar
[21]
Bankim J. Sanghavi, Otto S. Wolfbeis, Thomas Hirsch, Nathan S. Swami, Nanomaterial-based Electrochemical Sensing of Neurological Drugs and Neurotransmitters, Microchim Acta. (2015).
DOI: 10.1007/s00604-014-1308-4
Google Scholar
[22]
Rajendrachari Shashanka, Gururaj Kudur Jayaprakash, Prakashaiah B.G , Mohan Kumar and B.E Kumara Swamy, Electrocatalytic determination of Ascorbic Acid using a Green Synthesised Magnetite Nano-Flake Modified Carbon Paste Electrode by Cyclic Voltammetric method, Materials Research Innovations. (2021).
DOI: 10.1080/14328917.2021.1945795
Google Scholar
[23]
Gururaj Kudur Jayaprakash, B.E. Kumara Swamy, Shashanka Rajendrachari, S.C. Sharma, Roberto Flores-Moreno, Dual Descriptor Analysis of Cetylpyridinium modified Carbon Paste Electrodes for Ascorbic Acid sensing Applications, Journal of Molecular Liquids. (2021).
DOI: 10.1016/j.molliq.2021.116348
Google Scholar
[24]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical Investigation of Duplex Stainless Steel at Carbon Paste Electrode and its Application to the detection of dopamine, ascorbic and uric acid, International Journal of Scientific and Engineering Research. (2015).
Google Scholar
[25]
Sathish Reddy, B. E. Kumara Swamy, S. Aruna, Mohan Kumar, R. Shashanka, H. Jayadevappa, Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid, CHEMICAL SENSOR. (2012).
Google Scholar
[26]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. (2015) 5586 – 5598.
Google Scholar
[27]
Da-Seul Kim, Ee-Seul Kang, Seungho Baek, Sung-Sik Choo, Yong-HoChung, Donghyun Lee1, Junhong Min, Tae-Hyung Kim, Electrochemical detection of Dopamine using Periodic Cylindrical Gold Nanoelectrode Arrays, Scientific REPORTS. (2018).
DOI: 10.1038/s41598-018-32477-0
Google Scholar
[28]
Nada Farouk Atta, Ahmed Galal, Ekram Hamdy El-Ads, Samar Hamed Hassan, Cobalt Oxide Nanoparticles/Graphene/Ionic Liquid Crystal Modified Carbon Paste Electrochemical Sensor for Ultra-sensitive Determination of a Narcotic Drug, Adv Pharm Bull. (2019) 110-121.
DOI: 10.15171/apb.2019.014
Google Scholar
[29]
S. Deepa, B.E. Kumara Swamy, K. Vasantakumar Pai, Electrochemical Sensing Performance of Citicoline Sodium Modified Carbon Paste Electrode for determination of Dopamine and Serotonin, Materials Science for Energy Technologies. (2020) 584-592.
DOI: 10.1016/j.mset.2020.06.001
Google Scholar
[30]
S. R. Priyanka, K. P. Latha, Electrochemical Sensor for determination of Dopamine based on MnCr2O4 Nanocomposites Modified Carbon Paste Electrode, Annals of R.S.C.B. (2021) 17361-17376.
DOI: 10.1016/j.cdc.2021.100769
Google Scholar
[31]
Nada F. Atta, Ahmed Galal, Dalia M. El-Said, Electrochemical Sensor based on incorporation of Gold Nanoparticles, Ionic Liquid Crystal, and β-Cyclodextrin into Carbon Paste Composite for ultra-sensitive determination of norepinephrine in real samples, Canadian Journal of Chemistry. (2019).
DOI: 10.1139/cjc-2019-0025
Google Scholar
[32]
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G, Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review, Sensors. (2019).
DOI: 10.3390/s19092037
Google Scholar
[33]
Rayappa Shrinivas Mahale, Shamanth Vasanth, Hemanth Krishna, Sharath Peramenahalli Chikkegouda, Shashanka Rajendrachari, Adarsh Patil, Babarao Sitaram Rathod, Sensor-Based Additive Manufacturing Technologies, Biointerface Research in Applied Chemistry. (2022) 3513-3521.
DOI: 10.1016/j.matpr.2021.08.298
Google Scholar
[34]
Yogendra Kumar, Abhijit Sarkar, Dipak Kumar Das, Review: Electrochemical Determination of Dopamine, J Chem Sci Chem Engg. (2020) 55-63.
Google Scholar
[35]
Qun Wang, Qiang Xue, Tao Chen, Jiawei Li, Yuehua Liu, Xiaohan Shan, Fei Liu, Jianbo Jia, Recent Advances in Electrochemical Sensors for Antibiotics and their Applications, Chinese Chemical Letters. (2021) 609-619.
DOI: 10.1016/j.cclet.2020.10.025
Google Scholar
[36]
Saheed E. Elugoke, Omolola E. Fayemi, Abolanle S. Adekunle, Thabo T. I. Nkambule, Bhekie B. Mamba, Eno E. Ebenso, Conductive Nanodiamond-Based Detection of Neurotransmitters: One Decade, Few Sensors, ACS Omega. (2021) 18548-18558.
DOI: 10.1021/acsomega.1c01534
Google Scholar
[37]
Chandrashekar BN, Lv Weizhong, Kudur Jayaprakash G, Harrath K, Liu LWY, Kumara Swamy BE, Cyclic Voltammetric and Quantum Chemical Studies of a Poly (methionine) Modified Carbon Paste Electrode for Simultaneous Detection of Dopamine and Uric Acid. Chemosensors. (2019).
DOI: 10.3390/chemosensors7020024
Google Scholar
[38]
Maryam Mirzaei, Mohamad Sawan, Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review, Sensors. (2014) 17981-18008.
DOI: 10.3390/s141017981
Google Scholar
[39]
Durairaj S, Sidhureddy B, Cirone J, Chen A, Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters, Applied Sciences. (2018).
DOI: 10.3390/app8091504
Google Scholar
[40]
M. Hasanzadeh, N. Shadjou, Miguel de la Guardia, Current Advancement in Electrochemical Analysis of Neurotransmitters in Biological Fluids, Trends in Analytical Chemistry. (2016).
DOI: 10.1016/j.trac.2016.11.001
Google Scholar
[41]
Peyman Mohammadzadeh Jahani, Maedeh Jafari, Vinod Kumar Gupta, Shilpi Agarwal, Graphene Quantum dots/ionic Liquid-Modified Carbon Paste Electrode-Based Sensor for Simultaneous Voltammetric Determination of Norepinephrine and Acetylcholine, Int. J. Electrochem. Sci. (2020) 947 – 958.
DOI: 10.20964/2020.01.45
Google Scholar
[42]
Rifat Emrah Ozel, Akhtar Hayat, Silvana Andreescu (2014): Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine, Analytical Letters. (2014).
DOI: 10.1080/00032719.2014.976867
Google Scholar
[43]
Suparna Saha, Priyabrata Sarkar and Anthony Turner, Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles, Electroanalysis. (2014) 2197-2206.
DOI: 10.1002/elan.201400332
Google Scholar
[44]
Mohammadi S.Z, Beitollahi H, Tajik, S, Nonenzymatic Coated Screen-Printed Electrode for Electrochemical Determination of Acetylcholine. Micro and Nano System Lett. (2018).
DOI: 10.1186/s40486-018-0070-5
Google Scholar
[45]
Santhosh Bullapura Matt, Manjunatha Shivanna, Shivakumar Manjunath, Manjappa Siddalinganahalli, and Dharmaprakash Mallenahalli Siddalingappa, Electrochemical Detection of Serotonin using t-ZrO2 Nanoparticles Modified Carbon Paste Electrode, Journal of The Electrochemical Society. (2020).
DOI: 10.1149/1945-7111/abb835
Google Scholar
[46]
Saifeldin M. Siddeeg, Electrochemical Detection of Neurotransmitter Dopamine: A Review, Int. J. Electrochem. Sci. (2020) 599 – 612.
Google Scholar
[47]
Si Bo, Song E, Recent Advances in the Detection of Neurotransmitters, Chemosensors. (2018).
Google Scholar
[48]
Hu Mengjia, Development of Electrochemical Sensors Suitable for In Vivo Detection for Neurotransmitters, Theses and Dissertations. (2016).
Google Scholar
[49]
Nada F. Atta, Ahmed Galal and Ekram H. El-Ads, Graphene- A Platform for Sensor and Biosensor Applications. (2015).
DOI: 10.5772/60676
Google Scholar
[50]
V Pavitra, B M Praveen, G Nagaraju, R Shashanka, Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles, Top Catal (2022).
DOI: 10.1007/s11244-021-01553-7
Google Scholar
[51]
Shashanka Rajendrachari, Dileep Ramakrishna, Functionalized Nanomaterial-based Electrochemical Sensors: A sensitive Sensor Platform, Woodhead Publishing Series in Electronic and Optical Materials. (2022) 3-25.
DOI: 10.1016/b978-0-12-823788-5.00010-7
Google Scholar
[52]
R Shashanka, B E Kumara Swamy, Sathish Reddy, Debasis Chaira, Synthesis of Silver Nanoparticles and their Applications, Anal. Bioanal. Electrochem. (2013) 455-466.
Google Scholar
[53]
K S Kiran, R Shashanka, S V Lokesh, Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes, Top Catal (2022).
DOI: 10.1007/s11244-021-01558-2
Google Scholar
[54]
R Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, J IRAN CHEM SOC. (2021) 415-427.
DOI: 10.1007/s13738-020-02037-3
Google Scholar
[55]
R Shashanka, B E Kumara Swamy, Biosynthesis of Silver Nanoparticles using Leaves of Acacia Melanoxylon and their Application as Dopamine and Hydrogen Peroxide Sensors, Phys. Chem. Res. (2020) 1-18.
Google Scholar
[56]
Shashanka Rajendrachari, Volkan Murat Yilmaz, Abdullah Cahit Karaoglanli, Orhan Uzun, Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves, Moroccan Journal of Chemistry. (2020) 497-509.
Google Scholar
[57]
Vinayak Adimule, B C Yallur, Adarsha H J Gowda, Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures, Anal. Bioanal. Electrochem. (2022) 1-17.
Google Scholar
[58]
Vinayak Adimule, Basappa C. Yallur, Malathi Challa, Rajeev S. Joshi, Synthesis of hierarchical structured Gd doped α- Sb2O4 as an advanced nanomaterial for high performance energy storage devices, Heliyon (2021) 1-15.
DOI: 10.1016/j.heliyon.2021.e08541
Google Scholar
[59]
Vinayak Adimule, M G Revaigh, Adarsha H J, Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia, Journal of Material Eng and Performance (2020) 4586-4596.
DOI: 10.1007/s11665-020-04979-4
Google Scholar
[60]
Vinayak Adimule, K S Adarsh, Characterization and Microbial Resistance Properties of Titanium Dioxide Nanoparticles in Food Products, J. Nanosci. Tech. (2017) 240-241.
Google Scholar