Encapsulation of Watermelon Rind Extract in Chitosan Microcapsules: Analysis of Physical Properties and Flavonoid Release Ability

Article Preview

Abstract:

Along with the increase in watermelon production, the amount of watermelon rind waste increased. The total mass of fruit rind in a watermelon reaches around 30 percent and this fruit rind can increase the quantity of organic waste in Indonesia. The outer portion of the watermelon rind has a green layer containing a large amount of anthocyanin and a white layer containing flavonoids. In this study, the extract of watermelon rind containing anthocyanins and flavonoids was protected from damaging conditions using the ionic gelation encapsulation method. Chitosan (CN) was used as a natural polymer in this encapsulation method and sodium tripolyphosphate (TPP) was used as an ionic crosslinking agent. The total of flavonols content (TF), microstructure test, in vitro releasing test, and shelf life of microcapsules were observed in the various ratio between watermelon rind and the solvent. From the process, can be concluded that higher watermelon skin levels will produce the most flavonoid microcapsules (70g/35 mL). At 70g/35 mL or 2:1 g/mL watermelon skin levels give the best flavonoid release test results, especially if it will be applied to the pharmaceutical industry, which follows a controlled release method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anonim, 2015. Statistik Produksi Hortikultura Tahun 2014, Jakarta: Direktorat Jenderal Hortikultura, Kementerian Pertanian.

Google Scholar

[2] Andrianto, F., 2016. Pengaruh Sari Kulit dan Buah Semangka Merah (Citrullus lanatus) Sebagai Bahan Pengencer Terhadap Motilitas dan Viabilitas Spermatozoa Domba, Surabaya: Fakultas Kedokteran Hewan, Universitas Airlangga.

DOI: 10.15395/mkb.v48n3.842

Google Scholar

[3] S. Mallek-Ayadi, N. Bahloul, and N. Kechaou, Characterization, phenolic compounds and functional properties of Cucumis melo L. peels,, Food Chem., vol. 221, p.1691–1697, (2017).

DOI: 10.1016/j.foodchem.2016.10.117

Google Scholar

[4] S. J. Maleki, J. F. Crespo, and B. Cabanillas, Anti-inflammatory effects of flavonoids,, Food Chem., vol. 299, no. July, (2019).

Google Scholar

[5] McDougall G J, Fyffe S, Dobson P, Stewart D. 2007. Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion. Phytochemistry, 68, 1285–1294.

DOI: 10.1016/j.phytochem.2007.02.004

Google Scholar

[6] Sunggil K, Doohyun B. Dong Y C, Eul-Tai L, Moo-Kyoung Y. 2009. Identification of two novel inactive DFR-A alleles responsible for failure to produce anthocyanin and development of a simple PCR-based molecular marker for bulb color selection in onion (Allium cepa L.). Theoretical and Applied Genetics, 118, 1391–1399.

DOI: 10.1007/s00122-009-0989-2

Google Scholar

[7] Wang J, Mazza G. 2002. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 50, 4183–4189.

DOI: 10.1021/jf011613d

Google Scholar

[8] Hou D X. 2003. Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine, 3, 149–159.

DOI: 10.2174/1566524033361555

Google Scholar

[9] Kong L, Chia N, Goh T, Chia R. 2003. Brouillard, analysis and biological activities of anthocyanins. Phytochemistry, 62, 923–933.

DOI: 10.1016/s0031-9422(03)00438-2

Google Scholar

[10] M. Shafiq and Z. Singh, Pre-harvest spray application of phenylpropanoids influences accumulation of anthocyanin and flavonoids in 'Cripps Pink' apple skin,, Sci. Hortic. (Amsterdam)., vol. 233, no. February, p.141–148, (2018).

DOI: 10.1016/j.scienta.2018.01.020

Google Scholar

[11] S. C. S. R. De Moura, C. L. Berling, S. P. M. Germer, I. D. Alvim, and M. D. Hubinger, Encapsulating anthocyanins from Hibiscus sabdari ff a L . calyces by ionic gelation : Pigment stability during storage of microparticles,, Food Chem., vol. 241, no. August 2017, p.317–327, (2018).

DOI: 10.1016/j.foodchem.2017.08.095

Google Scholar

[12] Jamekhorshid, A., Sadrameli, S.M., Farid, M., 2014. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sust. Energ. Rev. 31, 531-542.

DOI: 10.1016/j.rser.2013.12.033

Google Scholar

[13] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R., 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40, 1107-1121.

DOI: 10.1016/j.foodres.2007.07.004

Google Scholar

[14] Gou, G.J., Dong, L.E., Bao, F.J., Wang, Z.Y., Jiao, L., Huang, J., Sun, Y., Xue, B., 2013. A review on research of the sustained release drug delivery system based on magnesium aluminate layered double hydroxide. Appl. Mech. Mater. 320, 495-504.

DOI: 10.4028/www.scientific.net/amm.320.495

Google Scholar

[15] L. E. Kurozawa and M. D. Hubinger, Hydrophilic food compounds encapsulation by ionic gelation,, Curr. Opin. Food Sci., vol. 15, p.50–55, (2017).

DOI: 10.1016/j.cofs.2017.06.004

Google Scholar

[16] Tsai, M.-L., Chen, R.-H., Bai, S.-W., & Chen, W.-Y. (2011). The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydrate Polymers, 84(2), 756–761.

DOI: 10.1016/j.carbpol.2010.04.040

Google Scholar

[17] Long L, Scardino A, Vasapollo G. 2007. Identification and quantification of anthocyanins in the berries of Pistacialen tiscus L., Phillyreala tifolia L. and Rubia peregrine L. Innovative Food Science and Emerging Technologies, 8, 360–364.

DOI: 10.1016/j.ifset.2007.03.010

Google Scholar

[18] Domaratzki, R. E., & Ghanem, A. (2013). Encapsulation and release of cladribine from chitosan nanoparticles? Journal of Applied Polymer Science, 128(3), 2173–2179.

DOI: 10.1002/app.38354

Google Scholar

[19] Rodrigues A S, Pérez M R, García M S, Simal J, Almeida D P. 2011. Effect of meteorological conditions on antioxidant flavonoids in portuguese cultivars of white and red onions. Food Chemistry, 124, 303–308.

DOI: 10.1016/j.foodchem.2010.06.037

Google Scholar

[20] Pérez M R, Regueiro J, Simal J, Rodrigues A S, Almeida D P. 2014. Increasing the added-value of onions as a source of antioxidant flavonoids: A critical review. Critical Reviews in Food Science & Nutrition, 54, 1050–1062.

DOI: 10.1080/10408398.2011.624283

Google Scholar

[21] Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68.

DOI: 10.1016/j.ijbiomac.2019.08.133

Google Scholar