Nanotechnology Adds Value to Optical and Sensor Characteristics of the Composite Material

Article Preview

Abstract:

During the last two decades, over more than five million research papers (articles, reviews, communications etc.) were published on nanocomposite materials. Most of them are excellent contributions that already mingle the readers’ and researchers’ interests; thus gaining many citations. This mini-review is focused on advancement in next-generation nanocomposite materials based on optical and sensing applications; and their practical execution. Some recent novel developments will be highlighted and future trends will be discussed. Nowadays, nanocomposite has ended up one of the most popular materials with potential usage in various scope, including packaging, automotive and aerospace industry, batteries with higher power output, flexible batteries, making lightweight sensors, in photocatalysis and making tumours easier to look at and to eliminate. New materials, viz. designed polymers, metal oxides, alloys, chalcogenides, nanostructured and hierarchical carbons, regularly induced researchers and engineers; to test and compare them with existing sensors of multifarious sorts. Nanocomposites not only offers’ the new technology and business opportunities in all sectors of the industry but also it tender innovations and new openings for all divisions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-99

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M.D. Coey, M. Venkatesan, H. Xu, Introduction to Magnetic Oxides. Functional Metal Oxides (2013) 1 – 49.

DOI: 10.1002/9783527654864.ch1

Google Scholar

[2] C. Yang C, W. Li, Z. Yang, L. Gu, Y. Yu, Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high performance sodium-ion batteries. Nano Energy 18 (2015) 12 – 19.

DOI: 10.1016/j.nanoen.2015.09.008

Google Scholar

[3] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Li storage properties of disordered graphene nanosheets. Chemistry of Materials, 21 (2009) 3136 – 3142.

DOI: 10.1021/cm900395k

Google Scholar

[4] Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 13 (2013) 3909 – 3914.

DOI: 10.1021/nl401995a

Google Scholar

[5] V. Adimule, B.C. Yallur, D. Bhowmik, A.H. Gowda, Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Transactions on Electrical and Electronic Materials (2021) 1 – 16.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[6] V. Adimule, D. Bhowmik, A. Suryavanshi, A Synthesis characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties In IOP Conference Series: Materials Science and Engineering 577 (2019) 012032.

DOI: 10.1088/1757-899x/577/1/012032

Google Scholar

[7] V.M. Adimule, J.G. Manjunath, S. Rajendrachari, Optical morphological and dielectric properties of novel Zr0.5Sr0.4Gd2O3 nanostructure for capacitor applications (2021).

Google Scholar

[8] V. Adimule, P. Banakar, V.H. Naik, Preparation characterization and optical properties of chromium oxide and yttrium nanocomposites. In AIP Conference Proceedings. 1989 (2018) 020001.

DOI: 10.1063/1.5047677

Google Scholar

[9] V. Adimule, P. Vageesha, G. Bagihalli, D. Bowmik, H.J. Adarsha, Synthesis characterization of hybrid nanomaterials of strontium yttrium copper doped with indole Schiff Base derivatives possessing dielectric and semiconductor properties. In Emerging Research in Electronics Computer Science and Technology, 1131 – 1140 (2019) Springer Singapore.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[10] V. Adimule, Synthesis characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. In AIP Conference Proceedings, 1989 (2018) 030001.

DOI: 10.1063/1.5047719

Google Scholar

[11] J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22 (2012) 3710 – 23725.

Google Scholar

[12] V. Adimule, S.S. Nandi SS, H.J. Adarsha, A Facile Synthesis of Cr Doped WO3 Nanostructures Study of their Current-Voltage Power Dissipation and Impedance Properties of Thin Films. Journal of Nano Research 67 (2021) 33 – 42.

DOI: 10.4028/www.scientific.net/jnanor.67.33

Google Scholar

[13] V. Adimule, B.C. Yallur, M. Challa, R.S. Joshi, Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon, 7 (2021) e08541.

DOI: 10.1016/j.heliyon.2021.e08541

Google Scholar

[14] V. Adimule, S.S. Nandi, A.H.J. Gowda, Enhanced power conversion efficiency of the P3BT (poly-3-butyl thiophene) doped nanocomposites of GdTiO3 as working electrode. Techno-Societal(2020) 55–68.

DOI: 10.1007/978-3-030-69925-3_6

Google Scholar

[15] V. Adimule, B.C. Yallur, S.R. Batakurki, A.H.J. Gowda, Microwave assisted synthesis of Cr doped Gd2O3 nanostructures and investigation on morphology optical photoluminescence properties nanoscience and technology, An International Journal (2021).

DOI: 10.1615/nanoscitechnolintj.2021039643

Google Scholar

[16] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical structural and morphological characteristics. Materials Today Chemistry 20 (2021) 00438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[17] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Optical structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by co-precipitation Method Journal of Fluorescence 31(2) (2021) 487 – 499.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[18] V. Adimule, B.C. Yallur, D. Bhowmik, A.H.J. Gowda, Morphology structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures Journal of Materials Science: Materials in Electronics 32(9) (2021) 2164 – 12181.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[19] V. Adimule, D. Bhowmik, A.H. Gowda, Morphology characterization and gas sensor properties of Sr doped WO3 thin film nanostructures. In Macromolecular Symposia, 1 (2021) 2100065.

DOI: 10.1002/masy.202100065

Google Scholar

[20] V. Adimule, M.G. Revaigh, H.J. Adarsha, Synthesis and fabrication of y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29 (2020) 4 – 5.

DOI: 10.1007/s11665-020-04979-4

Google Scholar

[21] M. Sadakane, W. Ueda, Three-Dimensionally Ordered Macroporous (3DOM) Perovskite Mixed Metal Oxides. In: Perovskites and Related Mixed Oxides. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA, (2015) 113 – 142.

DOI: 10.1002/9783527686605.ch06

Google Scholar

[22] S. Wang, C. Xiao, Y. Xing, H. Xu, S. Zhang, Carbon nanofibers / nano-sheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. Journal of Materials Chemistry A, 3 (2015) 6742 – 6746.

DOI: 10.1039/c5ta00050e

Google Scholar

[23] M. Abdel Salam, M. Mokhtar, S.N. Basahel, S.A. Al Thabaiti, A.Y. Obaid, Removal of chlorophenol from aqueous solution by multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Journal of Alloys and Compounds, 500 (2010) 87 – 92.

DOI: 10.1016/j.jallcom.2010.03.217

Google Scholar

[24] V. Adimule, R.G. Revaiah, S.S. Nandi, A.H. Jagadeesha, Synthesis characterization of Cr doped TeO2 nanostructures and its application as egfet ph sensor. Electroanalysis 33(3) (2021) 579 – 590.

DOI: 10.1002/elan.202060329

Google Scholar

[25] V. Adimule, S.S. Nandi, B.C. Yallur, N. Shaikh, CNT/Graphene-Assisted Flexible thin-film preparation for stretchable electronics and superconductors. In Sensors for Stretchable Electronics in Nanotechnology (2021) 89 – 103.

DOI: 10.1201/9781003123781-7

Google Scholar

[26] S.S. Nandi, A. Suryavanshi, V. Adimule, S.R. Maradur, Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr 0.5 Cu 0.4 Y 0.1 and Sr 0.5 Mn 0.5 and their electronic sensor applications. In AIP Conference Proceedings, 2274 (2020) 020006.

DOI: 10.1063/5.0022453

Google Scholar

[27] V. Adimule, A. Suryavanshi, B.C. Yallur, S.S. Nandi, A Facile Synthesis of poly (3-octyl thiophene): Ni 0.4 Sr 0.6 TiO3 hybrid nanocomposites for solar cell applications. In Macromolecular Symposia, 392 (2020) 2000001 – 7.

DOI: 10.1002/masy.202000001

Google Scholar

[28] V. Adimule, S.S. Kerur, S. Chinnam, Guar Gum and its Nanocomposites as Prospective Materials for Miscellaneous Applications: A Short Review. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01587-5

Google Scholar

[29] N.M. Shaikh, A.D. Sawant, G.B. Bagihalli, Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top. Catal (2022).

DOI: 10.1007/s11244-021-01547-5

Google Scholar

[30] N.M. Shaikh, V. Adimule, G.B. Bagihalli, A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01586-6

Google Scholar

[31] S.N. Shukla, P. Gaur, N. Rai, R. Mehrotra,1,4-Bis((1H-pyrrol-2-yl)methylene)thiosemicarbazide Complexes of Zn(II), Cd(II) and Hg(II): Single Source Precursor in Thermal Synthesis of Nanoparticle.Journal of Chinese Chemical Society. 61 (2014) 594 – 504.

DOI: 10.1002/jccs.201300454

Google Scholar

[32] N.M. Shaikh, G.B. Bagihalli, V. Adimule, A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01591-9

Google Scholar

[33] R.S. Keri, V. Adimule, P. Kendrekar, The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01562-0

Google Scholar

[34] V. Adimule, B.C. Yallur, R. Keri, Studies on Synthesis, Characterization of Smx ZnO: CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01574-w

Google Scholar

[35] N. Rai, R. Mehrotra, P. Gaur, S.N. Shukla, Pyrolytic synthesis of metal sulphide quantum dots from 1-((thiophen-2-yl)methylene). Topics. in Catalysis (2022).

DOI: 10.1007/s11244-022-01573-x

Google Scholar

[36] A. Kumar, A. Choudhary, H. Kaur, S. Mehta, A. Husen, Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Research Letters, 16 (2021) 156 – 182.

DOI: 10.1186/s11671-021-03612-0

Google Scholar

[37] N. Khandoker, S.C. Hawkins, R. Ibrahim, C.P. Huynh, F. Deng, Tensile strength of spinnable multiwall carbon nanotubes. Procedia Engineering, 10 (2011) 2572 – 2578.

DOI: 10.1016/j.proeng.2011.04.424

Google Scholar

[38] J.R. Choi, D.M. Shin, H. Song, D. Lee, K. Kim, Current achievements of nanoparticle applications in developing optical sensing and imaging techniques, Nano Convergence 3 (2016) 30 – 42.

DOI: 10.1186/s40580-016-0090-x

Google Scholar

[39] F. Flory, L. Escoubas, G. Berginc, Optical properties of nanostructured materials: a review, Journal of Nanophotonics, 5 (2011) 052502 – 0525020.

Google Scholar

[40] R. Saidur, T.C. Meng, Z. Said, M. Hasanuzzaman, A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf 55 (2012) 5899 – 907.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.087

Google Scholar

[41] D. Rativa, L.A. Gómez-Malagón, Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol Energy, 118 (2015) 419 – 425.

DOI: 10.1016/j.solener.2015.05.048

Google Scholar

[42] J. Jeon, S. Park, B.J. Lee, Optical property of blended plasmonic nanofluid based on gold nanorods. Opt Express 22 (2014) A1101.

DOI: 10.1364/oe.22.0a1101

Google Scholar

[43] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6 (2011) 225.

DOI: 10.1186/1556-276x-6-225

Google Scholar

[44] Y. Kameya, K. Hanamura, Enhancement of solar radiation absorption using nanoparticle suspension. Sol Energy 85 (2011) 299 – 307.

DOI: 10.1016/j.solener.2010.11.021

Google Scholar

[45] L. Zhang, J. Liu, G. He, Z. Ye, X. Fang, Z. Zhang, Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 130 (2014) 521 – 528.

DOI: 10.1016/j.solmat.2014.07.040

Google Scholar

[46] Z. Said, R. Saidur, N.A. Rahim, Optical properties of metal oxides based nanofluids. Int Commun Heat Mass Transf 59 (2014) 46 – 54.

DOI: 10.1016/j.icheatmasstransfer.2014.11.010

Google Scholar

[47] S.H.A. Ahmad, R. Saidur, I.M. Mahbubul, F.A. Al-Sulaiman, Optical properties of various nanofluids used in solar collector: A review. Renewable and Sustainable Energy Reviews 73 (2017) 1014 – 1030.

DOI: 10.1016/j.rser.2017.01.173

Google Scholar

[48] Q. Zhu, Y. Cui, L. Mu, L. Tang, Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation. Int J Thermophys 34 (2013) 2307 – 2321.

DOI: 10.1007/s10765-012-1208-y

Google Scholar

[49] M. Karami, M.A. Akhavan-Behabadi, M.R. Dehkordi, S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol Energy Mater Sol Cells 144 (2016) 136 – 142.

DOI: 10.1016/j.solmat.2015.08.018

Google Scholar

[50] A.L. Subramaniyan, S.L. Priya, R. Ilangovan, Energy harvesting through optical properties of TiO2 and C- TiO2 nanofluid for direct absorption solar collectors. Int J Renew Energy Res 5 (2015) 542 – 547.

DOI: 10.20508/ijrer.v5i2.2177.g6609

Google Scholar

[51] Y. Xuan, H. Duan, Q. Li, B.J. Lee, K. Park, T. Walsh, Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO 2 /Ag composite nanoparticles. RSC Adv 4 (2014) 16206.

DOI: 10.1039/c4ra00630e

Google Scholar

[52] M. Karami, M.A.A. Bahabadi, S. Delfani, A. Ghozatloo, A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells 121 (2014) 114 – 118.

DOI: 10.1016/j.solmat.2013.11.004

Google Scholar

[53] N. Hordy, D. Rabilloud, J.L. Meunier, S. Coulombe, High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105 (2014) 82 – 90.

DOI: 10.1016/j.solener.2014.03.013

Google Scholar

[54] E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt Express 18 (2010) 5179.

DOI: 10.1364/oe.18.005179

Google Scholar

[55] L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P.D. Ninni, S. Barison, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett 6 (2011) 282.

DOI: 10.1186/1556-276x-6-282

Google Scholar

[56] Y. He, S. Vasiraju, L. Que, Hybrid nanomaterial-based nanofluids for micropower generation. RSC Adv 4 (2014) 2433 – 2439.

DOI: 10.1039/c3ra44259d

Google Scholar

[57] D. Han, Z. Meng, D. Wu, C. Zhang, H. Zhu, J. Duffie, Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6 (2011) 457.

DOI: 10.1186/1556-276x-6-457

Google Scholar

[58] Z. Luo, C. Wang, W. Wei, G. Xiao, M. Ni, Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int J Heat Mass Transf 75 (2014) 262 – 271.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.072

Google Scholar

[59] M. Mehrali, E. Sadeghinezhad, S.T. Latibari, M. Mehrali, H. Togun, M.N.M. Zubir, Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci 49 (2014) 7156 – 7171.

DOI: 10.1007/s10853-014-8424-8

Google Scholar

[60] J. Liu, Z. Ye, L. Zhang, X. Fang, Z. Zhang, A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol Energy Mater Sol Cells 136 (2015) 177 – 186.

DOI: 10.1016/j.solmat.2015.01.013

Google Scholar

[61] R. Shende, R. Sundara, Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 140 (2015) 9 – 16.

DOI: 10.1016/j.solmat.2015.03.012

Google Scholar

[62] L. Jia, Y. Chen, S. Lei, S. Mo, X. Luo, X. Shao, External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid. Appl Energy 162 (2016) 1670 –1677.

DOI: 10.1016/j.apenergy.2015.08.067

Google Scholar

[63] Y. Li, M.A. El-Sayed, The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the SuzukiReactions in Aqueous Solution. Journal of Physical Chemistry B 105 (2001) 8938 − 8943.

DOI: 10.1021/jp010904m

Google Scholar

[64] T.A. Germer, K.A. Sharma, T.G. Brown, J.B. Oliver, Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film, Journal of the Optical Society of America A, 34(11) (2017) 1974 – (1984).

DOI: 10.1364/josaa.34.001974

Google Scholar

[65] S. Kumar, N.K. Verma, M.L. Singla, Highly reflective titania nanoparticle-based coating. Pigment Resin Technology, 41 (2012) 156 – 162.

DOI: 10.1108/03699421211226444

Google Scholar

[66] Y. Mastai, S. Polarz, M. Antonietti, Silica carbon nanocomposites – a new concept for the design of solar absorbers. Journal Advance Functional Material, 12 (2002) 197 – 202.

DOI: 10.1002/1616-3028(200203)12:3<197::aid-adfm197>3.0.co;2-a

Google Scholar

[67] K.T. Roro, N. Tile, B. Mwakikunga, Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process. Material Science Engineering B, 177 (2012) 581 – 587.

DOI: 10.1016/j.mseb.2012.03.017

Google Scholar

[68] A. Schuler, J. Boudaden, P, Oelhafen, Thin film multilayer design types for colored glazed thermal solar collectors. Journal of Solar Energy Material Solar Cells, 89 (2005) 219 – 231.

DOI: 10.1016/j.solmat.2004.11.015

Google Scholar

[69] D. Katzen, E. Levy, Y. Mastai, Thin films of silica–carbon nanocomposites for selective solar absorbers. Applied Surfactant Science, 248 (2005) 514 – 517.

DOI: 10.1016/j.apsusc.2005.03.037

Google Scholar

[70] D. Punetha, M. Kar, S.K. Pandey, A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing, Scientific Reports 10 (2020) 2151 - 2161.

DOI: 10.1038/s41598-020-58965-w

Google Scholar

[71] Q.L. Yan, M. Gozin, F.Q. Zhao, A. Cohen, S.P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials, Nanoscale, 8 (2016) 4799 – 4851.

DOI: 10.1039/c5nr07855e

Google Scholar

[72] J. Zhang, Z. Zhu, J. Di, Y. Long, W. Li, Y. Tu, A Sensitive Sensor for trace Hg2+ Determination Based on Ultrathin g-C3N4 Modified Glassy Carbon Electrode. Electrochimica Acta, 186 (2015) 192 – 200.

DOI: 10.1016/j.electacta.2015.10.173

Google Scholar

[73] L.C. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Annals of the New York Academy of Sciences, 102 (1962) 29 – 45.

DOI: 10.1111/j.1749-6632.1962.tb13623.x

Google Scholar

[74] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent Advances in Electrochemical Glucose Biosensors: A Review, RSC Advances, 3 (2013) 4473 – 4491.

DOI: 10.1039/c2ra22351a

Google Scholar

[75] H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, H. Uzawa, Mediatorless Direct Electron Transfer between Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase and Single-Walled Carbon Nanotubes, ACS Catalysis, 7 (2017) 725 – 734.

DOI: 10.1021/acscatal.6b02470

Google Scholar

[76] M. Zhao, Y. Gao, J. Sun, F. Gao, Mediatorless Glucose Biosensor and Direct Electron Transfer Type Glucose/Air Biofuel Cell Enabled with Carbon Nanodots, Analytical Chemistry, 87 (2015) 2615 – 2622.

DOI: 10.1021/acs.analchem.5b00012

Google Scholar

[77] Y.F. Bai, T.B. Xu, J.H.T. Luong, H.F. Cui, Direct Electron Transfer of Glucose Oxidase-Boron Doped Diamond Interface: A New Solution for a Classical Problem, Analytical Chemistry, 86 (2014) 4910 – 4918.

DOI: 10.1021/ac501143e

Google Scholar

[78] A. Chen, S. Chatterjee, Nanomaterials Based Electrochemical Sensors for Biomedical Applications, Chemical Society Reviews, 42 (2013) 5425 – 5438.

DOI: 10.1039/c3cs35518g

Google Scholar

[79] C. Cai, J. Chen, Direct Electron Transfer of Glucose Oxidase Promoted by Carbon Nanotubes, Analytical Biochemistry, 332 (2004) 75 – 83.

DOI: 10.1016/j.ab.2004.05.057

Google Scholar

[80] J.M. Goran, S.M. Mantilla, K.J. Stevenson, Influence of Surface Adsorption on the Interfacial Electron Transfer of Flavin Adenine Dinucleotide and Glucose Oxidase at Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes, Analytical Chemistry, 85 (2013) 1571 – 1581.

DOI: 10.1021/ac3028036

Google Scholar

[81] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano Letters, 4 (2004) 191 – 195.

DOI: 10.1021/nl0347233

Google Scholar

[82] M. Wooten, S. Karra, M. Zhang, W. Gorski, On the Direct Electron Transfer, Sensing, and Enzyme Activity in the Glucose Oxidase/Carbon Nanotubes System, Analytical Chemistry, 86 (2013) 752 – 757.

DOI: 10.1021/ac403250w

Google Scholar

[83] S. Tsujimura, K. Murata, W. Akatsuka, Exceptionally High Glucose Current on a Hierarchically Structured Porous Carbon Electrode with Wired, Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase, Journal of American Chemical Society, 136 (2014) 14432 – 14437.

DOI: 10.1021/ja5053736

Google Scholar

[84] P. Rafighi, M. Tavahodi, B. Haghighi, Fabrication of a Third-Generation Glucose Biosensor Using Graphene-Polyethyleneimine-Gold Nanoparticles Hybrid, Sensors and Actuators B Chemical, 232 (2016) 454 – 461.

DOI: 10.1016/j.snb.2016.03.147

Google Scholar

[85] Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Advance Materials, 22 (2010) 2206 – 2210.

DOI: 10.1002/adma.200903783

Google Scholar

[86] L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell, R.H. Guy, A. Ilie, Non-Invasive, Transdermal, Path-Selective and Specific Glucose Monitoring via a Graphene-Based Platform, Nature Nanotechnology, 13 (2018) 504 – 511.

DOI: 10.1038/s41565-018-0112-4

Google Scholar

[87] D. Chen, H. Feng, J. Li, Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chemical Review, 12 (2012) 6027 – 6053.

DOI: 10.1021/cr300115g

Google Scholar

[88] S.K. Urek, N. FranIiI, M. Turel, A. Lobnik, Sensing Heavy Metals Using Mesoporous-Based Optical Chemical Sensors, Journal of Nanomaterials, (2013) 1 – 13.

DOI: 10.1155/2013/501320

Google Scholar

[89] F. Tan, P.H.M. Leung, Z. Liud, Y. Zhang, L. Xiao, W. Ye, Microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane, Sensor and Actuators B. Chemical, 159 (2011) 328 – 335.

DOI: 10.1016/j.snb.2011.06.074

Google Scholar

[90] R. Gupta, H. Xie, Nanoparticles in Daily Life: Applications, Toxicity and Regulations, Journal of environmental pathology toxicology & oncology, 37(3) (2018) 209 – 230.

DOI: 10.1615/jenvironpatholtoxicoloncol.2018026009

Google Scholar

[91] V. Pavitra, B.M. Praveen, G. Nagaraju, R. Shashanka, Energy storage, Photocatalytic and Electrochemical nitrite sensing of ultrasound-assisted stable Ta2O5 nanoparticles, Topics in Catalysis, (2022).

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[92] K.S. Kiran, R. Shashanka, S.V. Lokesh, Enhanced photocatalytic activity of hydrothermally synthesized perovskite Strontium titanate nanocubes, Topics in Catalysis, (2022).

DOI: 10.1007/s11244-021-01558-2

Google Scholar

[93] R. Shashanka, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G.K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method, Arabian Journal of Chemistry, 14(6) (2021) 103180.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[94] G.K. Jayaprakash, B.E.K. Swamy, S. Rajendrachari, S.C. Sharma, R.F. Moreno, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, Journal of Molecular liquids, 334 (2021) 116348.

DOI: 10.1016/j.molliq.2021.116348

Google Scholar

[95] R. Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, Journal of the Iranian Chemical Society, 18 (2) (2021) 415 – 427.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[96] R.S. Mahale, V. Shamanth, K. Hemanth, S.K. Nithin, P.C. Sharath, R. Shashanka. A. Patil, D. Shetty, Processes and applications of metal additive manufacturing, Materials Today: Proceedings, (2021).

DOI: 10.1016/j.matpr.2021.08.298

Google Scholar

[97] R. Shashanka, K.B. Ceylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Research in Applied Chemistry, 10(4) (2020) 5951 – 5959.

DOI: 10.33263/briac104.951959

Google Scholar

[98] R. Shashanka, A.C. Karaoglanli, Y. Ceylan, O. Uzun, A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by Tilia Tomentosa (Ihlamur) leaves and its antibacterial studies, Pharmaceutical Sciences, 26(2) (2020) 175 – 183.

DOI: 10.34172/ps.2020.5

Google Scholar

[99] R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method, Physical Chemistry Research, 7(4) (2019) 799 – 812.

Google Scholar