p.19
p.29
p.51
p.69
p.89
p.103
p.113
p.119
p.131
Nanotechnology Adds Value to Optical and Sensor Characteristics of the Composite Material
Abstract:
During the last two decades, over more than five million research papers (articles, reviews, communications etc.) were published on nanocomposite materials. Most of them are excellent contributions that already mingle the readers’ and researchers’ interests; thus gaining many citations. This mini-review is focused on advancement in next-generation nanocomposite materials based on optical and sensing applications; and their practical execution. Some recent novel developments will be highlighted and future trends will be discussed. Nowadays, nanocomposite has ended up one of the most popular materials with potential usage in various scope, including packaging, automotive and aerospace industry, batteries with higher power output, flexible batteries, making lightweight sensors, in photocatalysis and making tumours easier to look at and to eliminate. New materials, viz. designed polymers, metal oxides, alloys, chalcogenides, nanostructured and hierarchical carbons, regularly induced researchers and engineers; to test and compare them with existing sensors of multifarious sorts. Nanocomposites not only offers’ the new technology and business opportunities in all sectors of the industry but also it tender innovations and new openings for all divisions.
Info:
Periodical:
Pages:
89-99
Citation:
Online since:
August 2022
Authors:
Price:
Сopyright:
© 2022 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] J.M.D. Coey, M. Venkatesan, H. Xu, Introduction to Magnetic Oxides. Functional Metal Oxides (2013) 1 – 49.
[2] C. Yang C, W. Li, Z. Yang, L. Gu, Y. Yu, Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high performance sodium-ion batteries. Nano Energy 18 (2015) 12 – 19.
[3] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Li storage properties of disordered graphene nanosheets. Chemistry of Materials, 21 (2009) 3136 – 3142.
DOI: 10.1021/cm900395k
[4] Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 13 (2013) 3909 – 3914.
DOI: 10.1021/nl401995a
[5] V. Adimule, B.C. Yallur, D. Bhowmik, A.H. Gowda, Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Transactions on Electrical and Electronic Materials (2021) 1 – 16.
[6] V. Adimule, D. Bhowmik, A. Suryavanshi, A Synthesis characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties In IOP Conference Series: Materials Science and Engineering 577 (2019) 012032.
[7] V.M. Adimule, J.G. Manjunath, S. Rajendrachari, Optical morphological and dielectric properties of novel Zr0.5Sr0.4Gd2O3 nanostructure for capacitor applications (2021).
[8] V. Adimule, P. Banakar, V.H. Naik, Preparation characterization and optical properties of chromium oxide and yttrium nanocomposites. In AIP Conference Proceedings. 1989 (2018) 020001.
DOI: 10.1063/1.5047677
[9] V. Adimule, P. Vageesha, G. Bagihalli, D. Bowmik, H.J. Adarsha, Synthesis characterization of hybrid nanomaterials of strontium yttrium copper doped with indole Schiff Base derivatives possessing dielectric and semiconductor properties. In Emerging Research in Electronics Computer Science and Technology, 1131 – 1140 (2019) Springer Singapore.
[10] V. Adimule, Synthesis characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. In AIP Conference Proceedings, 1989 (2018) 030001.
DOI: 10.1063/1.5047719
[11] J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22 (2012) 3710 – 23725.
[12] V. Adimule, S.S. Nandi SS, H.J. Adarsha, A Facile Synthesis of Cr Doped WO3 Nanostructures Study of their Current-Voltage Power Dissipation and Impedance Properties of Thin Films. Journal of Nano Research 67 (2021) 33 – 42.
[13] V. Adimule, B.C. Yallur, M. Challa, R.S. Joshi, Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon, 7 (2021) e08541.
[14] V. Adimule, S.S. Nandi, A.H.J. Gowda, Enhanced power conversion efficiency of the P3BT (poly-3-butyl thiophene) doped nanocomposites of GdTiO3 as working electrode. Techno-Societal(2020) 55–68.
[15] V. Adimule, B.C. Yallur, S.R. Batakurki, A.H.J. Gowda, Microwave assisted synthesis of Cr doped Gd2O3 nanostructures and investigation on morphology optical photoluminescence properties nanoscience and technology, An International Journal (2021).
[16] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical structural and morphological characteristics. Materials Today Chemistry 20 (2021) 00438.
[17] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Optical structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by co-precipitation Method Journal of Fluorescence 31(2) (2021) 487 – 499.
[18] V. Adimule, B.C. Yallur, D. Bhowmik, A.H.J. Gowda, Morphology structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures Journal of Materials Science: Materials in Electronics 32(9) (2021) 2164 – 12181.
[19] V. Adimule, D. Bhowmik, A.H. Gowda, Morphology characterization and gas sensor properties of Sr doped WO3 thin film nanostructures. In Macromolecular Symposia, 1 (2021) 2100065.
[20] V. Adimule, M.G. Revaigh, H.J. Adarsha, Synthesis and fabrication of y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29 (2020) 4 – 5.
[21] M. Sadakane, W. Ueda, Three-Dimensionally Ordered Macroporous (3DOM) Perovskite Mixed Metal Oxides. In: Perovskites and Related Mixed Oxides. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA, (2015) 113 – 142.
[22] S. Wang, C. Xiao, Y. Xing, H. Xu, S. Zhang, Carbon nanofibers / nano-sheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. Journal of Materials Chemistry A, 3 (2015) 6742 – 6746.
DOI: 10.1039/c5ta00050e
[23] M. Abdel Salam, M. Mokhtar, S.N. Basahel, S.A. Al Thabaiti, A.Y. Obaid, Removal of chlorophenol from aqueous solution by multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Journal of Alloys and Compounds, 500 (2010) 87 – 92.
[24] V. Adimule, R.G. Revaiah, S.S. Nandi, A.H. Jagadeesha, Synthesis characterization of Cr doped TeO2 nanostructures and its application as egfet ph sensor. Electroanalysis 33(3) (2021) 579 – 590.
[25] V. Adimule, S.S. Nandi, B.C. Yallur, N. Shaikh, CNT/Graphene-Assisted Flexible thin-film preparation for stretchable electronics and superconductors. In Sensors for Stretchable Electronics in Nanotechnology (2021) 89 – 103.
[26] S.S. Nandi, A. Suryavanshi, V. Adimule, S.R. Maradur, Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr 0.5 Cu 0.4 Y 0.1 and Sr 0.5 Mn 0.5 and their electronic sensor applications. In AIP Conference Proceedings, 2274 (2020) 020006.
DOI: 10.1063/5.0022453
[27] V. Adimule, A. Suryavanshi, B.C. Yallur, S.S. Nandi, A Facile Synthesis of poly (3-octyl thiophene): Ni 0.4 Sr 0.6 TiO3 hybrid nanocomposites for solar cell applications. In Macromolecular Symposia, 392 (2020) 2000001 – 7.
[28] V. Adimule, S.S. Kerur, S. Chinnam, Guar Gum and its Nanocomposites as Prospective Materials for Miscellaneous Applications: A Short Review. Top. Catal. (2022).
[29] N.M. Shaikh, A.D. Sawant, G.B. Bagihalli, Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top. Catal (2022).
[30] N.M. Shaikh, V. Adimule, G.B. Bagihalli, A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022).
[31] S.N. Shukla, P. Gaur, N. Rai, R. Mehrotra,1,4-Bis((1H-pyrrol-2-yl)methylene)thiosemicarbazide Complexes of Zn(II), Cd(II) and Hg(II): Single Source Precursor in Thermal Synthesis of Nanoparticle.Journal of Chinese Chemical Society. 61 (2014) 594 – 504.
[32] N.M. Shaikh, G.B. Bagihalli, V. Adimule, A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top. Catal. (2022).
[33] R.S. Keri, V. Adimule, P. Kendrekar, The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top. Catal. (2022).
[34] V. Adimule, B.C. Yallur, R. Keri, Studies on Synthesis, Characterization of Smx ZnO: CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top. Catal. (2022).
[35] N. Rai, R. Mehrotra, P. Gaur, S.N. Shukla, Pyrolytic synthesis of metal sulphide quantum dots from 1-((thiophen-2-yl)methylene). Topics. in Catalysis (2022).
[36] A. Kumar, A. Choudhary, H. Kaur, S. Mehta, A. Husen, Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Research Letters, 16 (2021) 156 – 182.
[37] N. Khandoker, S.C. Hawkins, R. Ibrahim, C.P. Huynh, F. Deng, Tensile strength of spinnable multiwall carbon nanotubes. Procedia Engineering, 10 (2011) 2572 – 2578.
[38] J.R. Choi, D.M. Shin, H. Song, D. Lee, K. Kim, Current achievements of nanoparticle applications in developing optical sensing and imaging techniques, Nano Convergence 3 (2016) 30 – 42.
[39] F. Flory, L. Escoubas, G. Berginc, Optical properties of nanostructured materials: a review, Journal of Nanophotonics, 5 (2011) 052502 – 0525020.
[40] R. Saidur, T.C. Meng, Z. Said, M. Hasanuzzaman, A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf 55 (2012) 5899 – 907.
[41] D. Rativa, L.A. Gómez-Malagón, Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol Energy, 118 (2015) 419 – 425.
[42] J. Jeon, S. Park, B.J. Lee, Optical property of blended plasmonic nanofluid based on gold nanorods. Opt Express 22 (2014) A1101.
DOI: 10.1364/oe.22.0a1101
[43] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6 (2011) 225.
[44] Y. Kameya, K. Hanamura, Enhancement of solar radiation absorption using nanoparticle suspension. Sol Energy 85 (2011) 299 – 307.
[45] L. Zhang, J. Liu, G. He, Z. Ye, X. Fang, Z. Zhang, Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 130 (2014) 521 – 528.
[46] Z. Said, R. Saidur, N.A. Rahim, Optical properties of metal oxides based nanofluids. Int Commun Heat Mass Transf 59 (2014) 46 – 54.
[47] S.H.A. Ahmad, R. Saidur, I.M. Mahbubul, F.A. Al-Sulaiman, Optical properties of various nanofluids used in solar collector: A review. Renewable and Sustainable Energy Reviews 73 (2017) 1014 – 1030.
[48] Q. Zhu, Y. Cui, L. Mu, L. Tang, Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation. Int J Thermophys 34 (2013) 2307 – 2321.
[49] M. Karami, M.A. Akhavan-Behabadi, M.R. Dehkordi, S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol Energy Mater Sol Cells 144 (2016) 136 – 142.
[50] A.L. Subramaniyan, S.L. Priya, R. Ilangovan, Energy harvesting through optical properties of TiO2 and C- TiO2 nanofluid for direct absorption solar collectors. Int J Renew Energy Res 5 (2015) 542 – 547.
[51] Y. Xuan, H. Duan, Q. Li, B.J. Lee, K. Park, T. Walsh, Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO 2 /Ag composite nanoparticles. RSC Adv 4 (2014) 16206.
DOI: 10.1039/c4ra00630e
[52] M. Karami, M.A.A. Bahabadi, S. Delfani, A. Ghozatloo, A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells 121 (2014) 114 – 118.
[53] N. Hordy, D. Rabilloud, J.L. Meunier, S. Coulombe, High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105 (2014) 82 – 90.
[54] E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt Express 18 (2010) 5179.
DOI: 10.1364/oe.18.005179
[55] L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P.D. Ninni, S. Barison, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett 6 (2011) 282.
[56] Y. He, S. Vasiraju, L. Que, Hybrid nanomaterial-based nanofluids for micropower generation. RSC Adv 4 (2014) 2433 – 2439.
DOI: 10.1039/c3ra44259d
[57] D. Han, Z. Meng, D. Wu, C. Zhang, H. Zhu, J. Duffie, Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6 (2011) 457.
[58] Z. Luo, C. Wang, W. Wei, G. Xiao, M. Ni, Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int J Heat Mass Transf 75 (2014) 262 – 271.
[59] M. Mehrali, E. Sadeghinezhad, S.T. Latibari, M. Mehrali, H. Togun, M.N.M. Zubir, Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci 49 (2014) 7156 – 7171.
[60] J. Liu, Z. Ye, L. Zhang, X. Fang, Z. Zhang, A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol Energy Mater Sol Cells 136 (2015) 177 – 186.
[61] R. Shende, R. Sundara, Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 140 (2015) 9 – 16.
[62] L. Jia, Y. Chen, S. Lei, S. Mo, X. Luo, X. Shao, External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid. Appl Energy 162 (2016) 1670 –1677.
[63] Y. Li, M.A. El-Sayed, The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the SuzukiReactions in Aqueous Solution. Journal of Physical Chemistry B 105 (2001) 8938 − 8943.
DOI: 10.1021/jp010904m
[64] T.A. Germer, K.A. Sharma, T.G. Brown, J.B. Oliver, Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film, Journal of the Optical Society of America A, 34(11) (2017) 1974 – (1984).
[65] S. Kumar, N.K. Verma, M.L. Singla, Highly reflective titania nanoparticle-based coating. Pigment Resin Technology, 41 (2012) 156 – 162.
[66] Y. Mastai, S. Polarz, M. Antonietti, Silica carbon nanocomposites – a new concept for the design of solar absorbers. Journal Advance Functional Material, 12 (2002) 197 – 202.
DOI: 10.1002/1616-3028(200203)12:3<197::aid-adfm197>3.0.co;2-a
[67] K.T. Roro, N. Tile, B. Mwakikunga, Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process. Material Science Engineering B, 177 (2012) 581 – 587.
[68] A. Schuler, J. Boudaden, P, Oelhafen, Thin film multilayer design types for colored glazed thermal solar collectors. Journal of Solar Energy Material Solar Cells, 89 (2005) 219 – 231.
[69] D. Katzen, E. Levy, Y. Mastai, Thin films of silica–carbon nanocomposites for selective solar absorbers. Applied Surfactant Science, 248 (2005) 514 – 517.
[70] D. Punetha, M. Kar, S.K. Pandey, A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing, Scientific Reports 10 (2020) 2151 - 2161.
[71] Q.L. Yan, M. Gozin, F.Q. Zhao, A. Cohen, S.P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials, Nanoscale, 8 (2016) 4799 – 4851.
DOI: 10.1039/c5nr07855e
[72] J. Zhang, Z. Zhu, J. Di, Y. Long, W. Li, Y. Tu, A Sensitive Sensor for trace Hg2+ Determination Based on Ultrathin g-C3N4 Modified Glassy Carbon Electrode. Electrochimica Acta, 186 (2015) 192 – 200.
[73] L.C. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Annals of the New York Academy of Sciences, 102 (1962) 29 – 45.
[74] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent Advances in Electrochemical Glucose Biosensors: A Review, RSC Advances, 3 (2013) 4473 – 4491.
DOI: 10.1039/c2ra22351a
[75] H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, H. Uzawa, Mediatorless Direct Electron Transfer between Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase and Single-Walled Carbon Nanotubes, ACS Catalysis, 7 (2017) 725 – 734.
[76] M. Zhao, Y. Gao, J. Sun, F. Gao, Mediatorless Glucose Biosensor and Direct Electron Transfer Type Glucose/Air Biofuel Cell Enabled with Carbon Nanodots, Analytical Chemistry, 87 (2015) 2615 – 2622.
[77] Y.F. Bai, T.B. Xu, J.H.T. Luong, H.F. Cui, Direct Electron Transfer of Glucose Oxidase-Boron Doped Diamond Interface: A New Solution for a Classical Problem, Analytical Chemistry, 86 (2014) 4910 – 4918.
DOI: 10.1021/ac501143e
[78] A. Chen, S. Chatterjee, Nanomaterials Based Electrochemical Sensors for Biomedical Applications, Chemical Society Reviews, 42 (2013) 5425 – 5438.
DOI: 10.1039/c3cs35518g
[79] C. Cai, J. Chen, Direct Electron Transfer of Glucose Oxidase Promoted by Carbon Nanotubes, Analytical Biochemistry, 332 (2004) 75 – 83.
[80] J.M. Goran, S.M. Mantilla, K.J. Stevenson, Influence of Surface Adsorption on the Interfacial Electron Transfer of Flavin Adenine Dinucleotide and Glucose Oxidase at Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes, Analytical Chemistry, 85 (2013) 1571 – 1581.
DOI: 10.1021/ac3028036
[81] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano Letters, 4 (2004) 191 – 195.
DOI: 10.1021/nl0347233
[82] M. Wooten, S. Karra, M. Zhang, W. Gorski, On the Direct Electron Transfer, Sensing, and Enzyme Activity in the Glucose Oxidase/Carbon Nanotubes System, Analytical Chemistry, 86 (2013) 752 – 757.
DOI: 10.1021/ac403250w
[83] S. Tsujimura, K. Murata, W. Akatsuka, Exceptionally High Glucose Current on a Hierarchically Structured Porous Carbon Electrode with Wired, Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase, Journal of American Chemical Society, 136 (2014) 14432 – 14437.
DOI: 10.1021/ja5053736
[84] P. Rafighi, M. Tavahodi, B. Haghighi, Fabrication of a Third-Generation Glucose Biosensor Using Graphene-Polyethyleneimine-Gold Nanoparticles Hybrid, Sensors and Actuators B Chemical, 232 (2016) 454 – 461.
[85] Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Advance Materials, 22 (2010) 2206 – 2210.
[86] L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell, R.H. Guy, A. Ilie, Non-Invasive, Transdermal, Path-Selective and Specific Glucose Monitoring via a Graphene-Based Platform, Nature Nanotechnology, 13 (2018) 504 – 511.
[87] D. Chen, H. Feng, J. Li, Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chemical Review, 12 (2012) 6027 – 6053.
DOI: 10.1021/cr300115g
[88] S.K. Urek, N. FranIiI, M. Turel, A. Lobnik, Sensing Heavy Metals Using Mesoporous-Based Optical Chemical Sensors, Journal of Nanomaterials, (2013) 1 – 13.
DOI: 10.1155/2013/501320
[89] F. Tan, P.H.M. Leung, Z. Liud, Y. Zhang, L. Xiao, W. Ye, Microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane, Sensor and Actuators B. Chemical, 159 (2011) 328 – 335.
[90] R. Gupta, H. Xie, Nanoparticles in Daily Life: Applications, Toxicity and Regulations, Journal of environmental pathology toxicology & oncology, 37(3) (2018) 209 – 230.
[91] V. Pavitra, B.M. Praveen, G. Nagaraju, R. Shashanka, Energy storage, Photocatalytic and Electrochemical nitrite sensing of ultrasound-assisted stable Ta2O5 nanoparticles, Topics in Catalysis, (2022).
[92] K.S. Kiran, R. Shashanka, S.V. Lokesh, Enhanced photocatalytic activity of hydrothermally synthesized perovskite Strontium titanate nanocubes, Topics in Catalysis, (2022).
[93] R. Shashanka, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G.K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method, Arabian Journal of Chemistry, 14(6) (2021) 103180.
[94] G.K. Jayaprakash, B.E.K. Swamy, S. Rajendrachari, S.C. Sharma, R.F. Moreno, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, Journal of Molecular liquids, 334 (2021) 116348.
[95] R. Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, Journal of the Iranian Chemical Society, 18 (2) (2021) 415 – 427.
[96] R.S. Mahale, V. Shamanth, K. Hemanth, S.K. Nithin, P.C. Sharath, R. Shashanka. A. Patil, D. Shetty, Processes and applications of metal additive manufacturing, Materials Today: Proceedings, (2021).
[97] R. Shashanka, K.B. Ceylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Research in Applied Chemistry, 10(4) (2020) 5951 – 5959.
[98] R. Shashanka, A.C. Karaoglanli, Y. Ceylan, O. Uzun, A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by Tilia Tomentosa (Ihlamur) leaves and its antibacterial studies, Pharmaceutical Sciences, 26(2) (2020) 175 – 183.
DOI: 10.34172/ps.2020.5
[99] R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method, Physical Chemistry Research, 7(4) (2019) 799 – 812.