Modified Auto-Combustion Synthesis of Mesoporous TiO2-NiO Nanosheets for Selective Adsorption and Photodegradation of Alizarin Yellow Dye under Direct Sunlight and Reaction Kinetic Study

Article Preview

Abstract:

The application of a photocatalyst with effective adsorption capacity and higher photocatalytic activity under direct sunlight for the treatment of industrial effluent contaminated with dyes has received increased attention. In this work, mesoporous TiO2-NiO nanosheets were synthesized by a modified auto-combustion technique followed by thermal post-treatment at 400°C. The XRD pattern for modified auto-combusted resulting TiO2 (sc) and TiO2-NiO (sc) [5wt%NiO] nanosheets comprised of mixed-phase anatase and rutile for TiO2 and cubic for NiO. The result of SEM demonstrated that the morphology of TiO2 is a sheet and TiO2-NiO is a rod-like structure. UV-vis spectroscopy results imply that the bandgap of TiO2 and TiO2-NiO mixed phase is 3.1eV and 2.7eV. N2 sorption (BET) showed a mesoporous structure and interpret specific surface areas of 19.528m2/g and 63.215 m²/g. Adsorption of the dye on the solid catalyst is inexpensive and efficient but disposing of the adsorbed dye is challenging. Among various dye removal techniques, photocatalytic degradation under direct sunlight is significant, cost-effective, and sustainable. Photocatalytic experiments using alizarin yellow as a model pollutant showed that the degradation percentage of AY was 93.54% in 120min for 100mg of TiO2(sc) and 97% in 90min for 60mg of TiO2-NiO(sc). Degradation of AY using TiO2(sc) and TiO2-NiO(sc) follows a pseudo-first-order reaction, whereas adsorption of AY on TiO2-NiO(sc) follows the second-order kinetics, fits well in the Freundlich Isotherm model. Therefore, nanosized mesoporous TiO2-NiO(sc) nanosheets with a p-n junction are considered efficient photocatalysts under direct sunlight due to narrowing down in bandgap, larger surface, and mixed-phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-145

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muhammad B Tahir, Muhammad Sohaib, and Muhammad Sagir, Encyclopedia of Smart Materials, Elsevier (2020), HTTPS; //.

Google Scholar

[2] Adeel Ahmad, Muhammad Usman, Bing-Yu, Xin Ding, Journal of Photochemistry and photobiology: Biology, 202, (2020), 111682, https://doi.org/10.1016/j.jphotobiol.2019.111682.

Google Scholar

[3] Ahmed K Abass, Suzan D, Raoof, Asian Journal of Chemistry (2016), 28(2):312-316, http://dx.doi.org/10.14233/ajchem.2016.19292.

Google Scholar

[4] D Tiwari, C Lalhriatpuri, SM Lee, SH Kong, Applied Surface Science, Elsevier (2015), http://dx.doi.org/10.1016/j.apsusc.2015.06.131.

Google Scholar

[5] S R Rawool, M R Pai, A M Baneerjee, A Arya, Applied Catalysis B, Elsevier (2018),.

Google Scholar

[6] Jose Pedro S. Valente, Pedro M Padilha, Ario Valdo O Florentino, Chemoshere, volume 64, Issue 7, pp.1128-1133, Elsevier (2006), https://doi.org/10.1016/j.chemosphere.2005.11.050.

Google Scholar

[7] Kansal S K, Singh M, Sud D, Journal of Hazardous materials, (2006), Volume 141(3) pp.581-590,.

Google Scholar

[8] Kais Elghniji, Olfa Hentati, Najwa Malik, Journal of Environmental Sciences, Volume 24, Issue 3, pp.479-487, Elsevier (2012), http://dx.doi.org/10.1021/ie101304a.

Google Scholar

[9] A K Prodjo Santoso, C Kusuma Wardani, M P Utomo, C T Hand Ko, Asian Journal of Chemistry, Volume 29, issue 6, pp.1270-1274, (2017), https://doi.org/10.1155/2012/626759.

Google Scholar

[10] Padmavathy N, B Narasimhamurthy, K H Hemakumar, J. Phys.: Conf. Ser. 2070 012044, Volume 2070, 012044, IOP Publishing ICPMS(2021),.

Google Scholar

[11] Mohammad Hamza, Ataf Ali Altaf, Samia Kausar, Catalysts, 10(10), 1150, MDPI (2020), https://doi.org/10.3390/catal10101150.

Google Scholar

[12] KM Reza, A S W Kuny, F Gulshan, Applied Water Science, Volume 7, pp.1569-1578, Springer (2017), DOI 10.1007/s13201-015-0367-y.

Google Scholar

[13] Zhang, Y Lin, D He, J Zhang, Chemical Physical Letters, Volume 504, issue 1-3, pp.71-75, Elsevier (2011), https://doi.org/10.1016/j.cplett.2011.01.060.

Google Scholar

[14] Nahid Javadi Baygi, Arghavan Vojdani, Saghir Sahar, Mollazzadeh Beidokhti, Ceramic International, Volume 46, Issue 10, Part A, pp.15417-15437, Elsevier (2020), https://doi.org/10.1016/j.ceramint.2020.03.087.

DOI: 10.1016/j.ceramint.2020.03.087

Google Scholar

[15] Guofu Cai, Jiangping Tu, Ding Zhou, The Journal of Physical Chemistry C, 118, 13, 6690-6696, ACS Publications (2014), https://doi.org/10.1021/jp500699u.

Google Scholar

[16] R. Vinoth, P Karthik, K Devan, Ultrasonics Sonochemistry, Volume 35, Part B, pp.655-663, Elsevier (2017), https://doi.org/10.1016/j.ultsonch.2016.03.005.

DOI: 10.1016/j.ultsonch.2016.03.005

Google Scholar

[17] Mohammed A, Mannaa, Khaled F, Qasim, Fares T, ACS Omega, 6,45, pp.30386-30400, ACS Publications (2021), doi/10.1021/acsomega.1c03693.

Google Scholar

[18] Lan Ching Sim, Kai Wern Ng, Shaliza Ibrahim, and Pichiah Saravanan, International Journal of Photpenergy, Volume 2013, Article ID 659013, Hindawi Publication (2013), https://doi.org/10.1155/2013/659013.

Google Scholar

[19] Michael Bushell, Suzanne Beau Chemin, Filip Kunc, Nanomaterials, 10(9), MDPI (2020) https://doi.org/10.3390/nano10091812.

Google Scholar

[20] Otmar Schmid, Tobias Stoeger, Journal of Aerosol Science, Volume 99, pp.133-143, Elsevier (2016), https://doi.org/10.1016/j.jaerosci.2015.12.006.

Google Scholar

[21] R Vinoth, P Karthik, K Devan, Ultrasonics Sonochemistry, Volume 35, Part B, pp.655-663, Elsevier (2017), https://doi.org/10.1016/j.molstruc.2013.10.065.

DOI: 10.1016/j.ultsonch.2016.03.005

Google Scholar

[22] Sadiq Sani, Rohana Adnan , Wen-Da Oh, Anwar Iqbal, Nanomaterials, Volume 11, p.2742, MDPI (2021), https://doi.org/10.3390/nano11102742.

Google Scholar

[23] Chuanzhi Sun, Lichen Liu, Lei Qi, Hao Li, Hongliang Zhang, Changshun Li, Fei Gao, Lin Dong, Journal of Colloid and Interface Science, Volume 364, Issue 2, pp.288-297, Elsevier (2011), https://doi.org/10.1016/j.jcis.2011.07.055.

Google Scholar

[24] Adimule V, Yallur BC, Batakurki SR & Gowda AHJ, Nanoscience and Technology,Volume 13, Issue 2, p.45,59, Begell(2022),.

Google Scholar

[25] Adimule V, Yallur BC, Bhowmik D, & Gowda AHJ, Materials in Electronics 32(9):2164-12181, Journal of Materials Science(2021), https://doi.org/10.1007/s10854-021-05845-2.

Google Scholar

[26] Adimule V, Bhowmik D, & Gowda AH, In Macromolecular Symposia Vol 400 No 1:2100065,(2021), https://doi.org/10.1002/masy.202100065.

Google Scholar

[27] Filip Ambroz, Thomas J, Macdonald Vladimir, Small Methods, Volume 3, Issue 11, 1800173, Advanced Science News (2018),.

Google Scholar

[28] Thammanoon Sreethawong, Supachai Ngamsinlapasathian, Susumu Yoshikawa, Chemical Engineering Journal, Volume 192, pp.292-300, Elsevier (2012), https://doi.org/10.1016/j.cej.2012.04.006.

Google Scholar

[29] Ajit Sharma, Byeong-Kyutee, J Environ Manage, Journal of Environmental Management, 181, pp.563-573, Elsevier (2016), http://dx.doi.org/10.1016/j.jenvman.2016.07.016.

Google Scholar

[30] Yuan-Chang Liang *, Nian-Cih Xu and Kai-Jen Chiang, Nanomaterials 9(12):1651, MDPI (2019),.

Google Scholar

[31] Mohammad Baugher Gholivand, Yadollah Yamini, Journal of Chemical Engineering, Volume 3, Issue 1,pp.529-540, Elsevier(2015), https://doi.org/10.1016/j.jece.2015.01.011.

Google Scholar

[32] Adil Denizil, Ridvan say. Erphan Piskin, Reactive and functional Polymers, Volume 55, Issue 1,pp.99-107, Elsevier(2003), https://doi.org/10.1016/S1381-5148(02)00219-5.

Google Scholar

[33] Karachi, Vaneet Kumar, Arabian Journal of Chemistry, Volume12, Issue 3, pp.316-329, Elsevier(2019), https://doi.org/10.1016/j.arabjc.2016.11.009.

Google Scholar

[34] S J Allene, G Mckay, J F Porter, Journal of Colloid and Interface Science, Volume 280, Issue, pp.322-333, Elsevier (2004), http://dx.doi.org/10.1016/j.jenvman.2016.07.016.

Google Scholar

[35] Ziming Zhao, Wenjin Sun, Madhumita B Ray, Science of The Total Environment, Volume 806, Part 4, 150885, Elsevier (2021), https://doi.org/10.1016/j.scitotenv.2021.150885.

Google Scholar

[36] An A Inyinbor, F A Adekola, G A Olatunji, Water Resources and Industry, 15, pp.14-27, Elsevier (2016) https://doi.org/10.1016/j.wri.2016.06.001.

Google Scholar

[37] N T R N Kumara, Nurulhayah Hamdan, Mohammad Iskandar Petra, Kushan U, Journal of Chemistry, Volume 2014, Article ID 468975, Hindwai Publications (2014), http://dx.doi.org/10.1155/2014/468975.

Google Scholar

[38] Frederic Gimbert, Nadia Morin-Crini, Francois Renault, Pierre-Marie Badot, Journal of Hazardous materials, Volume157, Issue1, pp.34-46, Elsevier(2008), https://doi.org/10.1016/j.jhazmat.2007.12.072.

Google Scholar

[39] Jianlong wang, Xuan Guo, Journal of Hazardous Materials, Volume 390, 122156, Elsevier (2020), https://doi.org/10.1016/j.jhazmat.2020.122156.

Google Scholar

[40] Emmanuel D Revellance, Dhan Lord Portela, Wayne Sharp, Cleaner Engineering and Technology, Volume 1, 100032, Elsevier (2020), https://doi.org/10.1016/j.clet.2020.100032.

Google Scholar

[41] M Rajeswari Kulkarni, T Revanth, Anirudh Acharya, Prasad Bhat, Resource-Efficient Technologies, Volume3, Issue 1, pp.71-77, Elsevier (2017), https://doi.org/10.1016/j.reffit.2017.01.009.

Google Scholar

[42] Adimule V, Yallur B.C & Keri R, Top Catal(2022), Springer Nature(2022), http://doi.org/10.1007/s11244-022-01574-w.

Google Scholar

[43] A Gnanaprakasam, V M Sivakumar, M Thirumarimurugan, Indian Journal of Material Science, Volume 2015, Article ID 601827, Hindawai Publication (2015), https://doi.org/10.1155/2015/601827.

Google Scholar

[44] C Y Beh, E M Cheng, N F Mohd Nasir, Emma Ziezie Mohd Tarmizi, Journal of Materials Research and Technology, Volume 9, Issue 6, pp.14267-14282, Elsevier (2020), https://doi.org/10.1016/j.jmrt.2020.10.012.

DOI: 10.1016/j.jmrt.2020.10.012

Google Scholar