[1]
Koizumi, M., The concept of FGM ceramic transactions. Funct Grad Mater, 34:3–10, (1993).
Google Scholar
[2]
Hadj Mostefa, A., Merdaci, S. and Mahmoudi, N., An Overview of Functionally Graded Materials «FGM» , Proceedings of the Third International Symposium on Materials and Sustainable Development Springer,, ISBN 978-3-319-89706-6, 267–278, (2018).
DOI: 10.1007/978-3-319-89707-3_30
Google Scholar
[3]
Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publisher, Boston, MA, (1999).
DOI: 10.1007/978-1-4615-5301-4_7
Google Scholar
[4]
Niino, M., Maeda, S., Recent development status of functionally gradient materials. ISIJ International 30, 699–703, (1990).
DOI: 10.2355/isijinternational.30.699
Google Scholar
[5]
Zhou, W., Zhang, R., Ai, S., He, R., Pei, Y., Fang, D., Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading, Composite Structures, 134, 680-688, (2015).
DOI: 10.1016/j.compstruct.2015.08.113
Google Scholar
[6]
Zhou, W., Ai, S., Chen, M., Zhang, R., He, R., Pei, Y., Fang, D., Preparation and thermodynamic analysis of the porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint, Composites Part B: Engineering, 82, 13-22, (2015).
DOI: 10.1016/j.compositesb.2015.07.018
Google Scholar
[7]
Kirchhoff, G.R., Uber das gleichgewicht und die bewegung einer elastischen Scheibe. J Reine Angew Math (Crelle's J) 40, 51–88, (1850).
DOI: 10.1515/9783112347461-004
Google Scholar
[8]
Reissner, E., On the Theory of Bending of Elastic Plates, Journal of Mathematics and Physics, Vol. 23, pp.184-191, (1944).
Google Scholar
[9]
Reissner, E., The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,, Journal of Applied Mechanics, 12(02), 69-77, (1945).
DOI: 10.1115/1.4009435
Google Scholar
[10]
Mindlin, R. D., Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates, Journal of Applied Mechanics, 18, 31-38, (1951).
DOI: 10.1115/1.4010217
Google Scholar
[11]
Ambartsumian, S. A., On the Theory of Bending Plates, Izv Otd Tech Nauk AN SSSR, 5(05), 69-77, (1958).
Google Scholar
[12]
Whitney, J.M., and Pagano, N.J., Shear Deformation in Heterogenous Anisotropic Plates, Journal of Applied Mechanics, 37, 1031-1036, (1970).
DOI: 10.1115/1.3408654
Google Scholar
[13]
Reddy, J.N., Analysis of Functionally Graded Plates, Int. J. Numer. Methods Eng., 47, 663-684, (2000).
Google Scholar
[14]
Zenkour, A.M., The refined sinusoidal theory for FGM plates on elastic foundations, Inter. J. of Mech. Sci., 51(11-12), 869-880, (2009).
DOI: 10.1016/j.ijmecsci.2009.09.026
Google Scholar
[15]
Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H., Benyoucef, S., Two new refined shear displacement models for functionally graded sandwich plates, Arch Appl Mech, 81(11), 1507–1522, (2011).
DOI: 10.1007/s00419-010-0497-5
Google Scholar
[16]
Ameur, M., Tounsi, A., Mechab, I., Adda Bedia, E.A., A New Trigonometric Shear Deformation Theory for Bending Analysis of Functionally Graded Plates Resting on Elastic Foundations, KSCE Journal of Civil Engineering, 15(8), 1405–1414, (2011).
DOI: 10.1007/s12205-011-1361-z
Google Scholar
[17]
Zhu, J., Lai, Z., Yin, Z., Jeon, J., Lee, S., Fabrication of ZrO 2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys, 68(1), 130–135, (2001).
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[18]
Aqida, S.N., Ghazali, M.I., Hashim, J., Effects of porosity on mechanical properties of metal matrix composite: an overview, J. Teknol, 40, 17–32, (2004).
Google Scholar
[19]
Zhu, J., Lai, Z., Yin, Z., Jeon, J, Lee, S., Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys, 68, 130–135, (2001).
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[20]
Rezaei, A.S., Saidi, A.R., On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates, European Journal of Mechanics-A/Solids, 63, 99-109, (2017).
DOI: 10.1016/j.euromechsol.2016.12.006
Google Scholar
[21]
Mota, A.F., Loja, M.A.R., Barbosa, J.I., Rodrigues, J.A, Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior, Math. Comput. Appl, 25, 25,(2020).
DOI: 10.3390/mca25020025
Google Scholar
[22]
Merdaci, S., Belghoul, H., High Order Shear Theory for Static Analysis Functionally Graded Plates with Porosities, Comptes rendus Mécanique, 347(03), 207-217, (2019).
DOI: 10.1016/j.crme.2019.01.001
Google Scholar
[23]
Merdaci, S., Free Vibration Analysis of Composite Material Plates Case of a Typical Functionally Graded FG Plates Ceramic/Metal, with Porosities, Nano Hybrids and Composites (NHC), 25, 69-83, (2019).
DOI: 10.4028/www.scientific.net/nhc.25.69
Google Scholar
[24]
Merdaci, S., Hadj Mostefa, A., Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory, Frattura ed Integrità Strutturale, 51, 199-214, (2020).
DOI: 10.3221/igf-esis.51.16
Google Scholar
[25]
Merdaci. S., Hadj Mostefa. A., Boutaleb. S., Hellal. H., Free Vibration Analysis of Functionally Graded FG Nano-plates with Porosities, Journal of Nano Research, 64, 61-74, (2020).
DOI: 10.4028/www.scientific.net/jnanor.64.61
Google Scholar
[26]
Merdaci, S., Hadj Mostefa, A., Beldjelili, Y., Merazi, M., Boutaleb, S., Hellal, H., Analytical solution for static bending analysis of functionally graded plates with porosities, Frattura ed Integrità Strutturale, 55, 65-75, (2021).
DOI: 10.3221/igf-esis.55.05
Google Scholar
[27]
Merdaci, S., Hadj Mostefa, A., Osama khayal, M.E.S., Natural frequencies of FG plates with two new distribution of porosity, Int. J. of Applied Mechanics and Engineering, 26 (02), 128-142, (2021).
DOI: 10.2478/ijame-2021-0023
Google Scholar
[28]
Merdaci, S., Hadj Mostefa, A., Belghoul, H., Rossana, D., and Francesco, T., Higher-Order Free Vibration Analysis of Porous Functionally Graded Plates, Journal of Composites Science (J. Compos. Sci). 5(11), 305, 1-14, (2021).
DOI: 10.3390/jcs5110305
Google Scholar
[29]
Şeref Doğuşcan, A., Vibration and Static Analysis of Functionally Graded Porous Plates, Journal of applied and computational mechanics, (2017).
Google Scholar
[30]
Zenkour, A. M., A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Composite structures, (2018).
DOI: 10.1016/j.compstruct.2018.05.147
Google Scholar
[31]
Nguyen, N., Nguyen, H.V., Lee, X., Seungyhe, N.H., Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates, Advances in Engineering software, (2018).
DOI: 10.1016/j.advengsoft.2018.11.005
Google Scholar
[32]
Li, K., Di, W., Xiaojun, C., Jin, C., Zhenyu, L., Wei, G. and Muyu, L., Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets, Composite structures, (2018).
DOI: 10.1016/j.compstruct.2018.07.059
Google Scholar
[33]
Pinar, A.D., Vedat, T., Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach, Composite Part B: Engineering, (2019).
DOI: 10.1016/j.compositesb.2018.12.020
Google Scholar
[34]
Semsi, C., Jinseok, K., Houssam, T., Bending, Free Vibration, and Buckling Analysis of Functionally Graded Porous Micro-Plates Using a General Third-Order Plate Theory, Journal of composites science, (2019).
DOI: 10.3390/jcs3010015
Google Scholar
[35]
Rabia, B., Tahar, H.D. and Abderezak, R., Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation, Coupl. Syst. Mech., Int. J., 9(6), 499-519, (2020).
Google Scholar
[36]
Reddy, J.N. and Cheng, Z.Q., Three-dimensional thermomechanical deformations of functionally graded rectangular plates, European J. of Mech., A/Solids, 20(5), 841-855, (2001).
DOI: 10.1016/s0997-7538(01)01174-3
Google Scholar
[37]
Liew, K.M., Kitipornchai, S., Zhang, X.Z. and Lim, C.W., Analysis of the thermal stress behaviourof functionally graded hollow circular cylinders", Int. J. Solids Struct., 40, 2355-2380, (2003).
DOI: 10.1016/s0020-7683(03)00061-1
Google Scholar
[38]
Vel, S.S. and Batra, R.C., Three-dimensional analysis of transient thermal stresses in functionally graded plates, Int. J. Solids Struct., 40, 7181-7196, (2003).
DOI: 10.1016/s0020-7683(03)00361-5
Google Scholar
[39]
Shukla, K.K., Kumar, K.V.R., Pandey, R. and Nath, Y., Postbuckling response of functionally graded rectangular plates subjected to thermo-mechanical loading, Int. J. Struct.Stab. Dynam., 7, 519-541, (2007).
DOI: 10.1142/s0219455407002381
Google Scholar
[40]
Zenkour, A.M. and Alghamdi, N.A., Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads, Mech. of Advanced Mater. and Struct., 17(6), 419-432, (2010).
DOI: 10.1080/15376494.2010.483323
Google Scholar
[41]
Zenkour, A.M., and Sobhy, M., Thermal buckling of various types of FGM sandwich plates, Compos. Struct., 93(1), 93-102, (2010).
DOI: 10.1016/j.compstruct.2010.06.012
Google Scholar
[42]
Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A., A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates, Aerosp.Sci.Technol., 24, 209-220, (2013).
DOI: 10.1016/j.ast.2011.11.009
Google Scholar
[43]
Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A., A sinusoidal plate theorywith 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates, Steel Compos. Struct., 18(1), 235-253, (2015).
DOI: 10.12989/scs.2015.18.1.235
Google Scholar
[44]
Houari, M.S.A., Tounsi, A., Anwar Bég, O., Thermoelasticbending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102 -111, (2013).
DOI: 10.1016/j.ijmecsci.2013.09.004
Google Scholar
[45]
Bouderba, B., Houari, M.S.A. and Tounsi, A., Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104, (2013).
DOI: 10.12989/scs.2013.14.1.085
Google Scholar
[46]
Li, Q., Iu, V.P., Kou, K.P, Three-dimensional vibration analysis of functionally graded material plates in thermal evironment. J. Sound Vib, 324, 733–750, (2009).
DOI: 10.1016/j.jsv.2009.02.036
Google Scholar
[47]
Talha, M., Singh, B.N., Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic–metal plates using finite element method. Proc. Inst. Mech. Eng C J. Mech. Eng. Sci. 225, 50–60, (2011).
DOI: 10.1243/09544062jmes2115
Google Scholar