Thermo-Mechanical Bending for Hybrid Material Plates Perfect-Imperfect Rectangular Using High Order Theory

Article Preview

Abstract:

In this paper, a higher order shear deformation theory is used to analyse the thermo-mechanical bending response of perfect-imperfect rectangular plates for hybrid ceramic and metal type (FGP) functionally graded plates with porosities. Based on the mixing law, the FG porous material qualities fluctuate with the thickness of the FGP layer. The equilibrium equations are found using the total potential energy approach. For simply supported (FGP) porous plates, the thermo-mechanical response is calculated. Analytical research shows the correctness of the existing high-order shear deformation theory in predicting the thermo-mechanical response of perfect-imperfect rectangular FG plates. Geometric characteristics, thickness ratios, gradient indices, porosity coefficients, mechanical loading, and thermal loading are all covered. According to the findings, the proposed hypothesis is more likely to be correct when it comes to the thermo-mechanical response of FG porous plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-44

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Koizumi, M., The concept of FGM ceramic transactions. Funct Grad Mater, 34:3–10, (1993).

Google Scholar

[2] Hadj Mostefa, A., Merdaci, S. and Mahmoudi, N., An Overview of Functionally Graded Materials «FGM» , Proceedings of the Third International Symposium on Materials and Sustainable Development Springer,, ISBN 978-3-319-89706-6, 267–278, (2018).

DOI: 10.1007/978-3-319-89707-3_30

Google Scholar

[3] Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publisher, Boston, MA, (1999).

DOI: 10.1007/978-1-4615-5301-4_7

Google Scholar

[4] Niino, M., Maeda, S., Recent development status of functionally gradient materials. ISIJ International 30, 699–703, (1990).

DOI: 10.2355/isijinternational.30.699

Google Scholar

[5] Zhou, W., Zhang, R., Ai, S., He, R., Pei, Y., Fang, D., Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading, Composite Structures, 134, 680-688, (2015).

DOI: 10.1016/j.compstruct.2015.08.113

Google Scholar

[6] Zhou, W., Ai, S., Chen, M., Zhang, R., He, R., Pei, Y., Fang, D., Preparation and thermodynamic analysis of the porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint, Composites Part B: Engineering, 82, 13-22, (2015).

DOI: 10.1016/j.compositesb.2015.07.018

Google Scholar

[7] Kirchhoff, G.R., Uber das gleichgewicht und die bewegung einer elastischen Scheibe. J Reine Angew Math (Crelle's J) 40, 51–88, (1850).

DOI: 10.1515/9783112347461-004

Google Scholar

[8] Reissner, E., On the Theory of Bending of Elastic Plates, Journal of Mathematics and Physics, Vol. 23, pp.184-191, (1944).

Google Scholar

[9] Reissner, E., The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,, Journal of Applied Mechanics, 12(02), 69-77, (1945).

DOI: 10.1115/1.4009435

Google Scholar

[10] Mindlin, R. D., Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates, Journal of Applied Mechanics, 18, 31-38, (1951).

DOI: 10.1115/1.4010217

Google Scholar

[11] Ambartsumian, S. A., On the Theory of Bending Plates, Izv Otd Tech Nauk AN SSSR, 5(05), 69-77, (1958).

Google Scholar

[12] Whitney, J.M., and Pagano, N.J., Shear Deformation in Heterogenous Anisotropic Plates, Journal of Applied Mechanics, 37, 1031-1036, (1970).

DOI: 10.1115/1.3408654

Google Scholar

[13] Reddy, J.N., Analysis of Functionally Graded Plates, Int. J. Numer. Methods Eng., 47, 663-684, (2000).

Google Scholar

[14] Zenkour, A.M., The refined sinusoidal theory for FGM plates on elastic foundations, Inter. J. of Mech. Sci., 51(11-12), 869-880, (2009).

DOI: 10.1016/j.ijmecsci.2009.09.026

Google Scholar

[15] Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H., Benyoucef, S., Two new refined shear displacement models for functionally graded sandwich plates, Arch Appl Mech, 81(11), 1507–1522, (2011).

DOI: 10.1007/s00419-010-0497-5

Google Scholar

[16] Ameur, M., Tounsi, A., Mechab, I., Adda Bedia, E.A., A New Trigonometric Shear Deformation Theory for Bending Analysis of Functionally Graded Plates Resting on Elastic Foundations, KSCE Journal of Civil Engineering, 15(8), 1405–1414, (2011).

DOI: 10.1007/s12205-011-1361-z

Google Scholar

[17] Zhu, J., Lai, Z., Yin, Z., Jeon, J., Lee, S., Fabrication of ZrO 2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys, 68(1), 130–135, (2001).

DOI: 10.1016/s0254-0584(00)00355-2

Google Scholar

[18] Aqida, S.N., Ghazali, M.I., Hashim, J., Effects of porosity on mechanical properties of metal matrix composite: an overview, J. Teknol, 40, 17–32, (2004).

Google Scholar

[19] Zhu, J., Lai, Z., Yin, Z., Jeon, J, Lee, S., Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys, 68, 130–135, (2001).

DOI: 10.1016/s0254-0584(00)00355-2

Google Scholar

[20] Rezaei, A.S., Saidi, A.R., On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates, European Journal of Mechanics-A/Solids, 63, 99-109, (2017).

DOI: 10.1016/j.euromechsol.2016.12.006

Google Scholar

[21] Mota, A.F., Loja, M.A.R., Barbosa, J.I., Rodrigues, J.A, Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior, Math. Comput. Appl, 25, 25,(2020).

DOI: 10.3390/mca25020025

Google Scholar

[22] Merdaci, S., Belghoul, H., High Order Shear Theory for Static Analysis Functionally Graded Plates with Porosities, Comptes rendus Mécanique, 347(03), 207-217, (2019).

DOI: 10.1016/j.crme.2019.01.001

Google Scholar

[23] Merdaci, S., Free Vibration Analysis of Composite Material Plates Case of a Typical Functionally Graded FG Plates Ceramic/Metal, with Porosities, Nano Hybrids and Composites (NHC), 25, 69-83, (2019).

DOI: 10.4028/www.scientific.net/nhc.25.69

Google Scholar

[24] Merdaci, S., Hadj Mostefa, A., Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory, Frattura ed Integrità Strutturale, 51, 199-214, (2020).

DOI: 10.3221/igf-esis.51.16

Google Scholar

[25] Merdaci. S., Hadj Mostefa. A., Boutaleb. S., Hellal. H., Free Vibration Analysis of Functionally Graded FG Nano-plates with Porosities, Journal of Nano Research, 64, 61-74, (2020).

DOI: 10.4028/www.scientific.net/jnanor.64.61

Google Scholar

[26] Merdaci, S., Hadj Mostefa, A., Beldjelili, Y., Merazi, M., Boutaleb, S., Hellal, H., Analytical solution for static bending analysis of functionally graded plates with porosities, Frattura ed Integrità Strutturale, 55, 65-75, (2021).

DOI: 10.3221/igf-esis.55.05

Google Scholar

[27] Merdaci, S., Hadj Mostefa, A., Osama khayal, M.E.S., Natural frequencies of FG plates with two new distribution of porosity, Int. J. of Applied Mechanics and Engineering, 26 (02), 128-142, (2021).

DOI: 10.2478/ijame-2021-0023

Google Scholar

[28] Merdaci, S., Hadj Mostefa, A., Belghoul, H., Rossana, D., and Francesco, T., Higher-Order Free Vibration Analysis of Porous Functionally Graded Plates, Journal of Composites Science (J. Compos. Sci). 5(11), 305, 1-14, (2021).

DOI: 10.3390/jcs5110305

Google Scholar

[29] Şeref Doğuşcan, A., Vibration and Static Analysis of Functionally Graded Porous Plates, Journal of applied and computational mechanics, (2017).

Google Scholar

[30] Zenkour, A. M., A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Composite structures, (2018).

DOI: 10.1016/j.compstruct.2018.05.147

Google Scholar

[31] Nguyen, N., Nguyen, H.V., Lee, X., Seungyhe, N.H., Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates, Advances in Engineering software, (2018).

DOI: 10.1016/j.advengsoft.2018.11.005

Google Scholar

[32] Li, K., Di, W., Xiaojun, C., Jin, C., Zhenyu, L., Wei, G. and Muyu, L., Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets, Composite structures, (2018).

DOI: 10.1016/j.compstruct.2018.07.059

Google Scholar

[33] Pinar, A.D., Vedat, T., Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach, Composite Part B: Engineering, (2019).

DOI: 10.1016/j.compositesb.2018.12.020

Google Scholar

[34] Semsi, C., Jinseok, K., Houssam, T., Bending, Free Vibration, and Buckling Analysis of Functionally Graded Porous Micro-Plates Using a General Third-Order Plate Theory, Journal of composites science, (2019).

DOI: 10.3390/jcs3010015

Google Scholar

[35] Rabia, B., Tahar, H.D. and Abderezak, R., Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation, Coupl. Syst. Mech., Int. J., 9(6), 499-519, (2020).

Google Scholar

[36] Reddy, J.N. and Cheng, Z.Q., Three-dimensional thermomechanical deformations of functionally graded rectangular plates, European J. of Mech., A/Solids, 20(5), 841-855, (2001).

DOI: 10.1016/s0997-7538(01)01174-3

Google Scholar

[37] Liew, K.M., Kitipornchai, S., Zhang, X.Z. and Lim, C.W., Analysis of the thermal stress behaviourof functionally graded hollow circular cylinders", Int. J. Solids Struct., 40, 2355-2380, (2003).

DOI: 10.1016/s0020-7683(03)00061-1

Google Scholar

[38] Vel, S.S. and Batra, R.C., Three-dimensional analysis of transient thermal stresses in functionally graded plates, Int. J. Solids Struct., 40, 7181-7196, (2003).

DOI: 10.1016/s0020-7683(03)00361-5

Google Scholar

[39] Shukla, K.K., Kumar, K.V.R., Pandey, R. and Nath, Y., Postbuckling response of functionally graded rectangular plates subjected to thermo-mechanical loading, Int. J. Struct.Stab. Dynam., 7, 519-541, (2007).

DOI: 10.1142/s0219455407002381

Google Scholar

[40] Zenkour, A.M. and Alghamdi, N.A., Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads, Mech. of Advanced Mater. and Struct., 17(6), 419-432, (2010).

DOI: 10.1080/15376494.2010.483323

Google Scholar

[41] Zenkour, A.M., and Sobhy, M., Thermal buckling of various types of FGM sandwich plates, Compos. Struct., 93(1), 93-102, (2010).

DOI: 10.1016/j.compstruct.2010.06.012

Google Scholar

[42] Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A., A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates, Aerosp.Sci.Technol., 24, 209-220, (2013).

DOI: 10.1016/j.ast.2011.11.009

Google Scholar

[43] Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A., A sinusoidal plate theorywith 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates, Steel Compos. Struct., 18(1), 235-253, (2015).

DOI: 10.12989/scs.2015.18.1.235

Google Scholar

[44] Houari, M.S.A., Tounsi, A., Anwar Bég, O., Thermoelasticbending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102 -111, (2013).

DOI: 10.1016/j.ijmecsci.2013.09.004

Google Scholar

[45] Bouderba, B., Houari, M.S.A. and Tounsi, A., Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104, (2013).

DOI: 10.12989/scs.2013.14.1.085

Google Scholar

[46] Li, Q., Iu, V.P., Kou, K.P, Three-dimensional vibration analysis of functionally graded material plates in thermal evironment. J. Sound Vib, 324, 733–750, (2009).

DOI: 10.1016/j.jsv.2009.02.036

Google Scholar

[47] Talha, M., Singh, B.N., Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic–metal plates using finite element method. Proc. Inst. Mech. Eng C J. Mech. Eng. Sci. 225, 50–60, (2011).

DOI: 10.1243/09544062jmes2115

Google Scholar