Investment Casting Simulation of ASTM F75 Acetabular Implant with Mold Pattern Orientation and Gating System Geometry Variation

Article Preview

Abstract:

An acetabular implant is a cup-shaped implant that wraps around the head of the femur at the hip joint. Severe damage to the acetabular implant results in bone turnover. To meet the needs of implants, appropriate implant manufacturing techniques are needed. Investment casting is the most widely used casting method because it has the best dimensional accuracy. To help reduce production costs in the industry, this research was carried out using the ProCast 2018 Software. In this study using the 2018 ProCast Software with investment casting techniques with CoCrMo material and variations in the orientation of the mold pattern, namely 0o, 45o, 90o and variations in the shape of the sprue including straight sprue , tapper sprue, and reverse tapper sprue. From these variations, the most optimal result is the tapper sppue variation with 0o print pattern orientation. With the results of the analysis related to the temperature distribution that occurs, fluidity, solidification process and the most optimal shrinkage porosity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-168

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jamari, Sugiyanto, Tauviqirrahman, C. Ansori, and R. Ismail, Analisa Pengaruh Ketebalan Acetabular Cup terhadap tekanan Kontak Pada Sambungan Tulang Pinggul Buatan,Pros. Semin. Nas. Sains dan Teknol., p.86–91, 2010.

Google Scholar

[2] K. R. Harrysson, O. L., Cormier, D. R., Marcellin-Little, D. J., & Jajal, Direct Fabrication of Metal Orthopedic Implants Using Electron, p.439–446, 2003.

Google Scholar

[3] N. Qosim, Fabrikasi Prototipe Implan Tulang Maksilofasial sebagai Produk Implan Lokal, vol. 21, no. 4, p.231–236, 2019.

DOI: 10.14710/rotasi.21.4.231-236

Google Scholar

[4] R. Susanto, B. Yuza, D. A. Hermawan, and A. Fadli, Potensi Pembuatan Replika Tulang Berpori Menggunakan Template Ampas Tebu, Chempublish, vol. 5, no. 2, p.116–129, 2021.

DOI: 10.22437/chp.v5i2.10612

Google Scholar

[5] P. Kumar, R. Singh, and I. P. S. Ahuja, Investigations on dimensional accuracy of the components prepared by hybrid investment casting, J. Manuf. Process., vol. 20, p.525–533, 2015.

DOI: 10.1016/j.jmapro.2015.07.008

Google Scholar

[6] R. Dojka, J. Jezierski, and N. S. Tiedje, Geometric Form of Gating System Elements and Its Influence on the Initial Filling Phase, J. Mater. Eng. Perform., vol. 28, no. 7, p.3922–3928, 2019.

DOI: 10.1007/s11665-019-03973-9

Google Scholar

[7] P. Development and K. Prathan, Optimization of sprue design for advanced investment casting through FEA analysis, 2020.

Google Scholar

[8] P. N. Rao, Manufacturing technology, vol. 1. Tata McGraw-Hill Education, 2013.

Google Scholar

[9] R. Thompson, Investment Casting. London, United Kingdom: Thames and Hudson Ltd, 2017.

Google Scholar

[10] F. Achmad, Simulasi dan Perbaikan Pengecoran Cetakan Pasir Pada Crackshaft Sinjai (Mesin Jawa Timur) Material FCD 600, 2015.

Google Scholar

[11] D. Schwam, Gating of Permanent Molds for Aluminum Castings. Cleveland, 2004.

Google Scholar

[12] Y. L. Xiaolin Chen, Finnite Element Modelling and Simulation with ANSYS Workbench, Second edi. CRC Press Taylor & Francis Group, LLC, 2019.

Google Scholar

[13] L. Yang et al., Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb-TiAl alloy, Intermetallics, vol. 66, p.149–155, 2015.

DOI: 10.1016/j.intermet.2015.07.006

Google Scholar

[14] J. Rafique, M. M. A. & Iqbal, Modeling and simulation of heat transfer phenomena during investment casting, Int. J. Heat Mass Transf., vol. 52, p.2132–2139, 2009.

DOI: 10.1016/j.ijheatmasstransfer.2008.11.007

Google Scholar

[15] P. . Rao, Manufacturing Technology: Foundry, Forming and Welding, Second Edi. New Delhi: McGraw Hill, 2003.

Google Scholar

[16] S. Santhi, S. B. Sakri, D. H. Rao, and S. Sundarrajan, Estimation of shrinkage porosity of a cast aluminium alloy," i-manager's J. Mech. Eng., vol. 2, no. 2, p.19–25, 2012.

DOI: 10.26634/jme.2.2.1567

Google Scholar

[17] B. D. Ratner, Introduction-biomaterials science an envolving multidisciplinary endeavor. Cambridge, MA, USA: Elsevier, Academic Press, 2013.

Google Scholar

[18] A. R. and M. R. Barkhudarov, Casting: An Analytical Approach. USA: Springer US, 2007.

Google Scholar

[19] R. F. Beeley, P. R. & Smart, Investment casting. Institute of Materials London, 1995.

Google Scholar

[20] C. M. Choudhari, B. E. Narkhede, and S. K. Mahajan, Casting Design and Simulation of Cover Plate using AutoCAST-X Software for Defect Minimization with Experimental Validation, MSPRO, vol. 6, no. Icmpc, p.786–797, 2014.

DOI: 10.1016/j.mspro.2014.07.095

Google Scholar

[21] S. Chastain, Metal Casting: A Sand Casting Manual for the Small Foundry. Jacksonville: Stephen Chastain, 2004.

Google Scholar

[22] A. Peregrina, B. L. Schorr, and K. City, Comparison of the effects of three sprue designs on the internal porosity in crowns cast with a silver-free high-palladium alloy, vol. 64, no. 1, 1982.

DOI: 10.1016/0022-3913(90)90172-9

Google Scholar

[23] S. Stein, Porosity and accuracy of multiple-unit titanium castings," no. 6, p.534–541, 1995.

Google Scholar

[24] R. G. Verrett and E. S. Duke, The effect of sprue attachment design of castability and porosity, vol. 61, p.418–424, 1989.

DOI: 10.1016/0022-3913(89)90006-1

Google Scholar

[25] R. Compagni, R. R. Faucher, and R. A. Yuodelis, Effects of sprue design, casting machine, and heat source on casting porosity, p.41–45.

DOI: 10.1016/0022-3913(84)90179-3

Google Scholar

[26] M. et al. Alvarez-Vera, Failure analysis of Co–Cr hip resurfacing prosthesis during solidification, Case Stud. Eng. Fail. Anal., vol. 1, p.1–5, 2013.

DOI: 10.1016/j.csefa.2012.10.002

Google Scholar

[27] A. Wu, M., Ahmadein, M. & Ludwig, Premature melt solidification during mold filling and its influence on the as-cast structure., Front. Mech. Eng., vol. 13, p.53–65, 2018.

DOI: 10.1007/s11465-017-0437-y

Google Scholar

[28] S. Yuli, In-vitro Behaviour of Co-Cr-Mo Alloy Prepared by Electrone Beam Melting (EBM) in Inflamantory Artificial Blood Plasma, Tohoku University, 2018.

Google Scholar

[29] E. Y. Salawu, O. O. Ajayi, A. O. Inegbenebor, O. State, and C. Author, Turbulence Flow Simulation Of Molten Metals In Runners For Defect Control In Casting Of A Spur Gear," vol. 10, no. 01, p.1921–1933, 2019.

Google Scholar

[30] Volkswagen, Volkswagen Standard VW 50093 'Porosity of Metal Castings, Volkswagen Aktiengesellschaft, 2012.

Google Scholar

[31] ASM International, Book of materials for medical devicesHandbook of Materials for Medical Devices, ASM Int., 2003.

Google Scholar

[32] M. Raza, Process development for investment casting of thin-walled components, Sch. Inov. Des. Eng. Malarbalen Univ. Vasteras, 2015.

Google Scholar