[1]
Schmid steven, Kalpakjain Serope, Manufacturing Processes; fifth edition; Prentice Hall, NewYork :561-562.
Google Scholar
[2]
Khan M. Y., Rao, P. S., & Pabla B. S., A Framework for Surface Modification by Electrical Discharge Coating using Variable Density Electrodes; In E3S Web of Conf EDP Sci; 2021; 3
DOI: 10.1051/e3sconf/202130901093
Google Scholar
[3]
Rizwee, M., Rao, P. S., & Khan, M. Y., Recent advancement in electric discharge machining of metal matrix composite materials. Mat Today: Proc2021; 3:2829-2836.
DOI: 10.1016/j.matpr.2020.08.657
Google Scholar
[4]
Thakur A. , Rao P.S., Mohd Yunus Khan, Study and optimization of surface roughness parameter during electrical discharge machining of titanium alloy (Ti-6246),Mat Today Proc ;2020: 1-9.
DOI: 10.1016/j.matpr.2020.10.785
Google Scholar
[5]
VitorBaldin , Claudia R B , Fred L. Amorim , Machining of Inconel 718 with a defined geometry tool or by electrical discharge machining, J of the Braz Society of Mech Sci and Engg2020 ; 42 :1-12.
DOI: 10.1007/s40430-020-02358-7
Google Scholar
[6]
Stefan Dzionk, MieczyslawSiemiatkowski," Studying the Effect of Working Conditions on WEDM Machining Performance of Super Alloy Inconel 617;Machines 2020; 8:1-18 .
DOI: 10.3390/machines8030054
Google Scholar
[7]
Aiyeshah Alhodaib 1, Pragya Shandilya, Arun Kumar Rouniyar and Himanshu Bisaria; Experimental Investigation on Silicon Powder Mixed-EDM of Nimonic-90 Superalloy; Metals; 2021: 1-17.
DOI: 10.3390/met11111673
Google Scholar
[8]
Omer Eyercioglu, Mehmet V Cakir, KursadGov, Influence of machining parameters on the surface integrity in small-hole electrical discharge machining; Proc of the Inst of MechEngg, Part B: J of Engg Manuf ;2013; 228 :51-61.
DOI: 10.1177/0954405413498730
Google Scholar
[9]
Rajyalakshmi G.Optimization of Process parameters of Wire Electrical Discharge Machining on Inconel825 using Grey Relational Analysis Coupled with Principle Component Analysis;Int J of App Research;2013:1294-1314
Google Scholar
[10]
Ahmad Said , AmriLajis M.Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration;Conf. Series Mat. Sci and Engg ; 2013 ; 50(1),:1-7.
DOI: 10.1088/1757-899x/50/1/012062
Google Scholar
[11]
Singh G, Parkash Dhiman D (2016), Review: Parametric Optimization of Edm Machine Using Taghuchi & Anova Technique, Int. Res. J. Eng. Technol., 783–788
Google Scholar
[12]
Mohri N, Fukuzawa Y, Tani T, Saito N, Furutani K (1996), Assisting Electrode Method for Machining Insulating Ceramics, Ann. ClRP, 45(1):201–204.
DOI: 10.1016/S0007-8506(07)63047-9
Google Scholar
[13]
H Liu et al (2007), Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic, J. Mater. Process. Technol., 208: 245–250, doi: 10.1016/j.jmatprotec. 2007.12.143.
DOI: 10.1016/j.jmatprotec.2007.12.143
Google Scholar
[14]
Kansal HK, Singh S, Kumar P (2005), Application of Taguchi method for optimisation of powder mixed electrical discharge machining, Int. J. Manuf. Technol. Manag., 7:329–341.
DOI: 10.1504/ijmtm.2005.006836
Google Scholar
[15]
Yu Z, Jun T, Masanori K (2004), Dry electrical discharge machining of cemented carbide, J. Mater. Process. Technol., 149: 353–357, doi: 10.1016/ j.jmatprotec.2003.10.044.
DOI: 10.1016/j.jmatprotec.2003.10.044
Google Scholar
[16]
Zhang Y, Liu Y, Shen Y, Ji R, Li Z, Zheng C (2014), Investigation on the influence of the dielectrics on the material removal characteristics of EDM, J. Mater. Process. Technol., 214:1052–1061 doi: 10.1016/ j.jmatprotec.2013.12.012.
DOI: 10.1016/j.jmatprotec.2013.12.012
Google Scholar
[17]
Kliuev M, Maradia U, Wegener K (2018), EDM Drilling of Non-Conducting Materials in Deionised Water, Procedia CIRP, 68: 11–16.
DOI: 10.1016/j.procir.2017.12.014
Google Scholar
[18]
Mishra A, Bhattacharya S, Datta D, Kr S, Dey GK (2015), Multiphysics Based Electrical Discharge Machining Simulation.
Google Scholar
[19]
Shanmugam SV, Krishnaraj V, Jagdeesh KA, Kumar SV, Subash S (2013), Numerical Modelling of Electro-Discharge Machining Process using Moving Mesh Feature, Procedia Engineering, 64:747–756.
DOI: 10.1016/j.proeng.2013.09.150
Google Scholar
[20]
Mehta HN (2015), Modeling of Electrical Discharge Machining Process, Int. J. Eng. Res. Technol., 4(6):153–157.
Google Scholar
[21]
Gupta K, Jain NK (2014), Comparative Study of Wire-EDM and Hobbing for Manufacturing HighQuality Miniature Gears, Mater. Manuf. Process., 29:1470–1476.
DOI: 10.1080/10426914.2014.941865
Google Scholar
[22]
Mohapatra KD, Shaibu VB, Sahoo SK (2018), Modeling and Analysis of Wire EDM in a Gear Cutting Process for a 2D Model, Materials Today: Proceedings, 5: 4793–4802, doi: 10.1016/j.matpr. 2017.12.053.
DOI: 10.1016/j.matpr.2017.12.053
Google Scholar
[23]
Pecas P, Henriques E (2009), Intrinsic innovations of die sinking electrical discharge machining technology : estimation of its impact, Int J Adv Manuf Technol, 44: 880–889, doi: 10.1007/s00170- 008-1902-x.
DOI: 10.1007/s00170-008-1902-x
Google Scholar
[24]
Kumar U, Rana J, Sharma A (2017), Multi-objective optimization of electro-discharge machining ( EDM ) parameter for sustainable machining, Materials Today: Proceedings, 4: 9147–9157, doi: 10.1016/ j.matpr.2017.07.271.
DOI: 10.1016/j.matpr.2017.07.271
Google Scholar
[25]
Patowari PK, Saha P, Mishra PK (2015), An experimental investigation of surface modification of C-40 steel using W – Cu powder metallurgy sintered compact tools in EDM, Int. J. Adv. Manuf acturingTechnology
DOI: 10.1007/s00170-015-7004-7
Google Scholar
[26]
Patowari PK, Saha P, Mishra PK (2010), Artificial neural network model in surface modification by EDM using tungsten – copper powder metallurgy sintered electrodes, Int. J. Adv. Manuf. Technol., 51: 627–638.
DOI: 10.1007/s00170-010-2653-z
Google Scholar
[27]
Bighnesh Kumar Sahua S, Datta S (2018), On Electro-Discharge Machining of Inconel 718 Super Alloys : An Experimental Investigation, Materials Today: Proceedings, 5: 4861–4869.
DOI: 10.1016/j.matpr.2017.12.062
Google Scholar
[28]
Kumar A, Maity K , Mishra H, Vivekananda K (2017), Multi-Objective Optimization of Wire Electrical Discharge Machining Process Parameterson Inconel 718, Materials Today: Proceedings, 4: 2137–2146, doi: 10.1016/j.matpr. 2017.02.060.
DOI: 10.1016/j.matpr.2017.02.060
Google Scholar
[29]
Mohapatro KD, Sahoo SK (2018), A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method, Decis. Sci. Lett., 7: 157– 170.
DOI: 10.5267/j.dsl.2017.6.002
Google Scholar
[30]
Wang C, Qiang Z (2019), Comparison of MicroEDM Characteristics of Inconel 706 between EDM Oil and an Al Powder-Mixed Dielectric, Adv. Mater. Sci. Eng., 1–11.
DOI: 10.1155/2019/5625360
Google Scholar
[31]
Raju L, Hiremath SS (2016), A State-of-the-art Review on Micro Electro-Discharge Machining, Procedia Technology, 25: 1281–1288.
DOI: 10.1016/j.protcy.2016.08.222
Google Scholar
[32]
Kiyomi Nakakita S, Kondoh T (1994), A Study on Diesel Combustion with High Pressure Fuel Injection, NII-Electronic Libr. Serv., 93–1706: 254– 262.
Google Scholar
[33]
Bisaria H, Shandilya P (2019), The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining, J. Mech. Eng. Sci., 1–11.
DOI: 10.1177/0954406218763447
Google Scholar
[34]
Upadhyay C, Rahul, Datta S, Mahapatra SS, Biswal BB (2018), An experimental investigation on electro discharge machining of Inconel 601, Int. J. Ind. Syst. Eng., 29(2): 223–251.
DOI: 10.1504/ijise.2018.10012919
Google Scholar
[35]
Niamat M, Sarfraz S, Aziz H, Jahanzaib M, Shehab E, Ahmad W (2017), Effect of Different Dielectrics on Material Removal Rate , Electrode Wear Rate and Microstructures in EDM, Procedia CIRP, 60: 2–7.
DOI: 10.1016/j.procir.2017.02.023
Google Scholar
[36]
Pitayachaval P, Jittamai P, Baothong T (2017), A review of machining parameters that effect to wire electrode wear, 4th International Conference on Industrial Engineering and Applications, 1–4.
DOI: 10.1109/IEA.2017.7939167
Google Scholar
[37]
Mahapatra SS, Rahul, Datta S, Masanta M, Biswas BB (2018), Analysis on surface characteristics of electro-discharge machined Inconel 718, Int. J. Mater. Prod. Technol., 56: 135–168
DOI: 10.1504/ijmpt.2018.10010003
Google Scholar
[38]
Janak B. Valaki, Pravin P. Rathod, C.D. Sankhavara- Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM) Journal of Manufacturing Processes (2016).22 51-160
DOI: 10.1016/j.jmapro.2016.03.004
Google Scholar
[39]
Misbah Niamata, Shoaib Sarfrazb, Haris Aziza, Mirza Jahanzaiba, Essam Shehabb, Wasim Ahmada and Salman Hussaina- Effect of Different Dielectrics on Material Removal Rate, Electrode Wear Rate and Microstructures in EDM Procedia CIRP (2017).60 2-7
DOI: 10.1016/j.procir.2017.02.023
Google Scholar
[40]
Jagdeep Singh and Rajiv Sharma- Assessing the effects of dielectrics on environmentally conscious powdermixed EDM of difficult to machine material (WC-Co) Frontiers of Mechanical Engineering (2016).11 374-387
DOI: 10.1007/s11465-016-0388-8
Google Scholar
[41]
Shuliang Donga, Zhenlong Wanga , Yukui Wanga and Hongzheng Liua- An experimental investigation of enhancement surface quality of microholes for Be-Cu alloys using micro-EDM with multi-diameter electrode and different dielectrics Procedia CIRP (2016).42 257-262
DOI: 10.1016/j.procir.2016.02.282
Google Scholar
[42]
K.Ashifaq, M. Asad and S. Anwar A Comprehensive Analysis of the Effect of Graphene-Based Dielectric for Sustainable Electric Discharge Machining of Ti-6Al-4V. Materials 2021, 14(1), 23
DOI: 10.3390/ma14010023
Google Scholar
[43]
W. Ming, S. Zhang, G. Zhang and K.liu-Progress in modeling of electrical discharge machining process. International Journal of Heat and Mass Transfer, 15 May 2022, 187.
DOI: 10.1016/j.ijheatmasstransfer.2022.122563
Google Scholar
[44]
L. Singh, N. Yadav and S. Lal, Experimental investigation for sustainable electric discharge machining with Pongamia and Jatropha as dielectric medium, Advances in Materials and Processing Technologies 8(2):1-20
DOI: 10.1080/2374068x.2020.1860499
Google Scholar
[45]
A. Kumar and G. Krishnaiah,Optimization of Process Parameters And Dielectric Fluids on Machining En 31 By Using Topsis; Int. Journal of Engineering Research and Application ,Vol. 6, 2016, 13-18
Google Scholar
[46]
M. Rathi and D. Mane, Study on Effect of Powder Mixed dielectric in EDM of Inconel 718, Int. Jou. of Sci and Res Publ, 4(11), (2014)
Google Scholar
[47]
S. Tripathy and D.K. Tripathy- surface characterization and multi response optimization of edm process parameters using powder mixed dielectric. Materials today Proceeding.4 2058-2067.
DOI: 10.1016/j.matpr.2017.02.051
Google Scholar
[48]
T. Ryota, A. Okada and Y. Okamoto, Improvement in Surface Characteristics by EDM with Chromium Powder Mixed Fluid, Procedia CIRP;2016;42
DOI: 10.1016/j.procir.2016.02.277
Google Scholar
[49]
S. Kumar and Uma Batra, Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric, Jou. Of mfg. proc.,2012;14(1)
DOI: 10.1016/j.jmapro.2011.09.002
Google Scholar
[50]
M. Rathi and D. Mane; Study on Effect of Powder Mixed dielectric in EDM of Inconel 718;Intl. jou. Of sci. and Res. Publ.,2014,4(11)
Google Scholar
[51]
S. Assarzadeh, M. Ghoreishi, A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters, The International Journal of Advanced Manufacturing Technology,64,2013.
DOI: 10.1007/s00170-012-4115-2
Google Scholar
[52]
S. Chaudhary and R. Jadoun, Current Research Issue, Trend & Applications of Powder Mixed Dielectric Electric Discharge Machining (PM-EDM): A Review; international journal of engineering sciences & research technology2014;3(7)
Google Scholar
[53]
A. Dhaker, K. Chaudharyand K. Diwedi; An environment-friendly and sustainable machining method: near-dry EDM; Materials and Manufacturing Processes; 2019, 34.
DOI: 10.1080/10426914.2019.1643471
Google Scholar
[54]
V. yadav , P.Kumar, A. Divedi; Effect of tool rotation in near-dry EDM process on machining characteristics of HSS;Mat. And Mfg. Process,2018;34(7);
DOI: 10.1080/10426914.2019.1605171
Google Scholar
[55]
C. Kao, J. Tao, J Shih; Near dry electrical discharge machining International Journal of Machine Tools and Manufacture;2014;47(15)
DOI: 10.1016/j.ijmachtools.2007.06.001
Google Scholar
[56]
Q. Zhang, T.Yang, J. Zhang; Research on material removal rate of powder mixed near dry electrical discharge machining; The International Journal of Advanced Manufacturing Technology 2013;68
DOI: 10.1007/s00170-013-4973-2
Google Scholar
[57]
Vineet Yadav, ramveer Singh, Pradeep Kumar; Performance enhancement of rotary tool near-dry EDM process through tool modification; Journal of the Brazilian Society of Mechanical Sciences and Engineering ,2021; 72
DOI: 10.1007/s40430-021-02806-y
Google Scholar
[58]
S. Biswas and M. Mukherjee; Uses of Various Dielectrics in Electro Discharge Machining (EDM) – A Critical Review; International Journal of Innovative Science and Research Technology;2023,6(4).
Google Scholar
[59]
S. Kumar and T. Gupta; A review of electrical discharge machining (EDM) and its optimization techniques; Mat. Today:Procd.;2023;4;.
DOI: 10.1016/j.matpr.2023.02.186
Google Scholar
[60]
A. Lamba and Vipin; Experimental investigation of machining of EN31 Steel in abrasive mixed rotary EDM with graphite and copper electrode;Sadhana; 2022; 47
DOI: 10.1007/s12046-022-01906-2
Google Scholar
[61]
Saqib Anwar, Naveed Ahmedand Kashif Isfaq; The potentiality of sinking EDM for micro-impressions on Ti-6Al-4V: keeping the geometrical errors (axial and radial) and other machining measures (tool erosion and work roughness) at minimum;scientific reports; 2019;9
DOI: 10.1038/s41598-019-52855-6
Google Scholar
[62]
P.Pandey and S. Jilani; Experimetnal investigations into the performance of water as dielectric in EDM; International Journal of Machine Tool Design and Research; 2020; 4
DOI: 10.1016/0020-7357(84)90044-1
Google Scholar
[63]
Y. Lin, Y.Chin & C. Ching; Electrical Discharge Machining (EDM) Characteristics Associated with Electrical Discharge Energy on Machining of Cemented Tungsten Carbide; Materials and Manufacturing Processes; 2007; 8
DOI: 10.1080/10426910801938577
Google Scholar
[64]
C. Kao, J.Tao and A. Shih; Near dry electrical discharge machining; International Journal of Machine Tools and Manufacture; ;2007;47(15)
DOI: 10.1016/j.ijmachtools.2007.06.001
Google Scholar
[65]
M. Nimat,S. Sarfaraz & W. Ahmad; Parametric Modelling and Multi-Objective Optimization of Electro Discharge Machining Process Parameters for Sustainable Production; Energies;2020; 13
DOI: 10.3390/en13010038
Google Scholar
[66]
C. Pellegrirni and C. Ravasio; A sustainability index for the micro-EDM drilling process; Journal of Cleaner Production; (2020)
Google Scholar
[67]
Y. Liu, Y. Zhang, R.Jie; Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric; Applied Surface Science; 2021; 57
DOI: 10.1016/j.apsusc.2011.01.083
Google Scholar
[68]
J. Valaki and P. Rathod; Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM); Jour. Of Manfg. Proc.; (2016)
DOI: 10.1016/j.jmapro.2016.03.004
Google Scholar
[69]
D. Byliss, J. Walsh and G Shama; Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet; new Jour. Of Phy.; 2009;
DOI: 10.1088/1367-2630/11/11/115024
Google Scholar
[70]
Govindan P, Agrawal R, Joshi SS (2011), Experimental investigation on dry EDM using helium gas dielectric, Int. J. Manuf. Technol. Manag., 24: 40–56.
DOI: 10.1504/ijmtm.2011.046759
Google Scholar
[71]
Erde A, Temel D (1982), Investigation on the Use of Water as a Dielectric, Proceedings of the Twentysecond International Machine Tool Design and Research Conference, 437–440.
Google Scholar
[72]
Valaki JB, Rathod PP, Sankhavara CD (2016), Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining ( EDM ), J. Manuf. Process., 22: 151–160.
DOI: 10.1016/j.jmapro.2016.03.004
Google Scholar
[73]
Das S, Paul S, Doloi B (2019), An experimental and computational study on the feasibility of biodielectrics for sustainable electrical discharge machining, Journal of Manufacturing Processes, 41: 284–296.
DOI: 10.1016/j.jmapro.2019.04.005
Google Scholar
[74]
Singaravel R, Rao S (2018), Study of Vegetable Oil and their Properties for as an Alternative Source to Mineral Oil-Based Dielectric Fluid in Electric Discharge Machining, Int. J. Mod. Eng. Res. Technol., 5: 237–244
Google Scholar
[75]
Rao P.S., Yashpal; A Review on Current Research Trends in Micro–EDM; International Journal of Research and Scientific Innovation;2018.
Google Scholar
[76]
J. Valaki and P. Rathod; Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM); Jour. Of Manfg. Proc.; (2016)
DOI: 10.1016/j.jmapro.2016.03.004
Google Scholar
[77]
M.Y. Khan, P.S Rao and B.S. Pabla; Investigations on the feasibility of Jatropha curcas oil based biodiesel for sustainable dielectric fluid in EDM process; Mat. Today:Proc.; (2019)
DOI: 10.1016/j.matpr.2019.11.325
Google Scholar
[78]
D. Agarwal, A.K. Agarwal, Performance and emissions characteristics of jatropha oil (preheated and blends) in a direct injection compression ignition engine, Appl. Therm. Eng. 27 (13) (2007) 2314–2323
DOI: 10.1016/j.applthermaleng.2007.01.009
Google Scholar
[79]
E. Akbar, Z. Yaakob, S.K. Kamarudin, M. Ismail, J. Salimon, Characteristic and composition of jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock, Eur. J. Sci. Res. 29 (3) (2009) 396–403.
Google Scholar