[1]
Gradl, Paul & Tinker, Darren & Ivester, John & Skinner, Shawn & Teasley, Thomas & Bili, John. (2021). Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing with Inconel 718. Additive Manufacturing. 47. 102305.
DOI: 10.1016/j.addma.2021.102305
Google Scholar
[2]
Singh, Sharanjit & Anish, Sachdeva & Sharma, Vishal. (2017). Optimization of selective laser sintering process parameters to achieve the maximum density and hardness in polyamide parts. Progress in Additive Manufacturing.
DOI: 10.1007/s40964-017-0020-4
Google Scholar
[3]
A.R, Vinod and Srinivasa C.K. "Studies on laser-sintering of copper by direct metal laser sintering process." (2014).
Google Scholar
[4]
Aboulkhair, Nesma & Everitt, Nicola & Ashcroft, Ian & Tuck, Christopher. (2014). Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting. Additive Manufacturing. 1-4.
DOI: 10.1016/j.addma.2014.08.001
Google Scholar
[5]
Roy, Nilabh & Behera, Dipankar & Dibua, Obehi & Foong, Chee & Cullinan, Michael. (2019). A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems & Nanoengineering. 5. 64.
DOI: 10.1038/s41378-019-0116-8
Google Scholar
[6]
Markl, Matthias & Lodes, Matthias & Franke, Martin & Körner, Carolin. (2017). Additive manufacturing using selective electron beam melting. Welding and Cutting. 16. 177-184.
Google Scholar
[7]
Raplee, J., Plotkowski, A., Kirka, M. et al. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing. Sci Rep 7, 43554 (2017).
DOI: 10.1038/srep43554
Google Scholar
[8]
Shashi, G & Laskar, Md Ashiqur Rahman & Biswas, Hridoy & Saha, Aritra. (2017). A Brief Review of Additive Manufacturing with Applications.
Google Scholar
[9]
Moniz, Liliana & Chen, Qiang & Guillemot, Gildas & Bellet, Michel & Gandin, CharlesAndré & Colin, Christophe & Bartout, JeanDominique & Berger, MarieHélène. (2019). Additive manufacturing of an oxide ceramic by Laser Beam Melting – Comparison between finite element simulation and experimental results. Journal of Materials Processing Technology. 270.
DOI: 10.1016/j.jmatprotec.2019.02.004
Google Scholar
[10]
Matache, Gheorghe & Vladut, Mihai & Paraschiv, Alexandru & Condruz, Raluca. (2020). Edge and corner effects in selective laser melting of IN 625 alloy. Manufacturing Review. 7. 8.
DOI: 10.1051/mfreview/2020008
Google Scholar
[11]
Brandt, Christina & Krause, A. & Niebsch, Jenny & Vehmeyer, Jost & Brinksmeier, E. & Maass, Peter & Ramlau, Ronny. (2013). Lecture Notes in Production Engineering.
DOI: 10.1007/978-3-642-32448-2_15
Google Scholar
[12]
Raghunath, N. and Pulak Mohan Pandey. "Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering." International Journal of Machine Tools & Manufacture 47 (2007): 985-995.
DOI: 10.1016/j.ijmachtools.2006.07.001
Google Scholar
[13]
13 Hiemenz, Joe. (2007). Electron Beam Melting. Advanced Materials and Processes. 165. 45-46.
Google Scholar
[14]
Gong, Xibing & Anderson, Ted & Chou, Kevin. (2014). Int. Review on powder-based electron beam additive manufacturing technology. Manufacturing Review.
DOI: 10.1051/mfreview/2014001
Google Scholar
[15]
Aboulkhair, Nesma & Simonelli, Marco & Parry, Luke & Ashcroft, Ian & Tuck, Christopher & Hague, Richard. (2019). 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science. 100578.
DOI: 10.1016/j.pmatsci.2019.100578
Google Scholar
[16]
Mfusi, B & Tshabalala, Lerato & Popoola, A & Mathe, Ntombizodwa. (2018). The effect of selective laser melting build orientation on the mechanical properties of AlSi10Mg parts. IOP Conference Series: Materials Science and Engineering. 430. 012028.
DOI: 10.1088/1757-899X/430/1/012028
Google Scholar
[17]
Chen, Jianguo & Wang, Xuanbo & Pan, Yingcai. (2019). Influence of laser power and scan speed on the microstructure and properties of GH4169 alloy prepared by selective laser melting. IOP Conference Series: Materials Science and Engineering. 688. 033064.
DOI: 10.1088/1757-899X/688/3/033064
Google Scholar
[18]
Du, Kaiping & Li, Shengfeng & Jie, Shtn & Gao, Xiangzhou & Yu, Yueguang. (2019). Effect of 316L stainless steel powder size distribution on selective laser melting process. Journal of Physics: Conference Series. 1347. 012121.
DOI: 10.1088/1742-6596/1347/1/012121
Google Scholar
[19]
Whenish, Ruban & Vijayakumar, V. & Dhanabal, Pradhap & Thiagarajan, Pridhar. (2014). Effective process parameters in selective laser sintering. International Journal of Rapid Manufacturing. 4. 148.
DOI: 10.1504/IJRAPIDM.2014.066036
Google Scholar
[20]
Pauza, J., Rollett, A. Simulation Study of Hatch Spacing and Layer Thickness Effects on Microstructure in Laser Powder Bed Fusion Additive Manufacturing using a Texture-Aware Solidification Potts Model. J. of Materi Eng and Perform 30, 7007–7018 (2021).
DOI: 10.1007/s11665-021-06110-7
Google Scholar
[21]
Xometry Design Guide: Selective Laser Sintering (SLS).
Google Scholar
[22]
Walton, Dan & Moztarzadeh, Hadi. (2017). Design and Development of an Additive Manufactured Component by Topology Optimisation. Procedia CIRP. 60. 205-210.
DOI: 10.1016/j.procir.2017.03.027
Google Scholar
[23]
Ameen, Wadea & Al-Ahmari, Abdulrahman & Abdulhameed, Osama. (2019). Design-for-Metal-Additive-Manufacturing-An-Investigation-of-Key-Design-Application-on-Electron-Beam-Melting. 13.
Google Scholar
[24]
Bellini, Costanzo & Berto, Filippo & Di Cocco, Vittorio & Iacoviello, Francesco & Mocanu, Larisa P. & Razavi, Mohammad. (2021). Additive manufacturing processes for metals and effects of defects on mechanical strength: a review. Procedia Structural Integrity. 33.
DOI: 10.1016/j.prostr.2021.10.057
Google Scholar
[25]
Oyar, Perihan. (2017). Laser Sintering Technology and Balling Phenomenon. Photomedicine and Laser Surgery. 36.
DOI: 10.1089/pho.2017.4311
Google Scholar
[26]
Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni-Cr-Al-Ti γ/γ' superalloy Kenel C., De Luca A., Joglekar S.S., Leinenbach C., Dunand D.C. (2021) Additive Manufacturing, 47, art. no. 102224
DOI: 10.1016/j.addma.2021.102224
Google Scholar
[27]
Debroy, Tarasankar & Zuback, James. (2018). The Hardness of Additively Manufactured Alloys. 10.20944/preprints201810. 0096.v1.
DOI: 10.20944/preprints201810.0096.v1
Google Scholar
[28]
Kluczyński, Janusz & Sniezek, Lucjan & Grzelak, Krzysztof & Torzewski, Janusz. (2016). Study of the mechanical properties components made by SLM additive technology.
Google Scholar
[29]
Molaei, Reza & Fatemi, Ali. (2018). Fatigue Design with Additive Manufactured Metals: Issues to Consider and Perspective for Future Research. Procedia Engineering. 213. 5-16.
DOI: 10.1016/j.proeng.2018.02.002
Google Scholar
[30]
Sert, Enes & Hitzler, Leonhard & Hafenstein, Stephan & Merkel, Markus & Werner, E. & Öchsner, A.. (2020). Tensile and compressive behavior of additively manufactured AlSi10Mg samples. Progress in Additive Manufacturing. 5.
DOI: 10.1007/s40964-020-00131-9
Google Scholar
[31]
Hitzler, Leonhard & Schoch, N. & Heine, Burkhard & Merkel, Markus & Hall, W. & Öchsner, Andreas. (2018). Compressive behavior of additively manufactured AlSi10Mg: Druckeigenschaften additive gefertigter AlSi10Mg Proben. Materialwissenschaft und Werkstofftechnik. 49. 683-688.
DOI: 10.1002/mawe.201700239
Google Scholar
[32]
Aliprandi, Placido & Giudice, Fabio & Guglielmino, Eugenio & Sili, A.. (2019). Tensile and Creep Properties Improvement of Ti-6Al-4V Alloy Specimens Produced by Electron Beam Powder Bed Fusion Additive Manufacturing. Metals. 9. 1207.
DOI: 10.3390/met9111207
Google Scholar
[33]
Testa, Gabriel and Gianluca Iannitti. "Preliminary investigation on impact resistance of additive manufactured Ti-6Al-4V." Procedia structural integrity 12 (2018): 589-593.
DOI: 10.1016/j.prostr.2018.11.060
Google Scholar
[34]
Silbernagel, C., Ashcroft, I., Dickens, P., & Galea, M. (2018). Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors. Additive Manufacturing, 21.
DOI: 10.1016/j.addma.2018.03.027
Google Scholar
[35]
Condruz, Raluca & Matache, Gheorghe & Paraschiv, Alexandru. (2020). Characterization of IN 625 recycled metal powder used for selective laser melting. Manufacturing Review. 7. 5.
DOI: 10.1051/mfreview/2020002
Google Scholar
[36]
Westphal, Erik and Hermann Seitz. "A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks." Additive manufacturing 41 (2021): 101965.
DOI: 10.1016/j.addma.2021.101965
Google Scholar