[1]
F. Ali, W. Raza, X. Li, H. Gul, K-H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy. 57 (2019) 879-902.
DOI: 10.1016/j.nanoen.2019.01.012
Google Scholar
[2]
H. Liu, J. Zhong, C. Lee, S-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5 (2018) 041306.
Google Scholar
[3]
T. Kumar, R. Kumar, V.S. Chauhan, J. Twiefel, Finite-Element Analysis of a Varying-Width Bistable Piezoelectric Energy Harvester, Energy Technol. 3 (2015) 1243–1249.
DOI: 10.1002/ente.201500191
Google Scholar
[4]
M. Leinonen, J. Juuti, H. Jantunen, J. Palosaari, Energy Harvesting with a Bimorph Type Piezoelectric Diaphragm Multilayer Structure and Mechanically Induced Pre-stress, Energy Technol. 4 (2016) 620–624.
DOI: 10.1002/ente.201500429
Google Scholar
[5]
J. Zhu, X. Niu, X. Hou, J. He, X. Chou, C. Xue, W. Zhang, Highly Reliable Real-time Self-powered Vibration Sensor Based on a Piezoelectric Nanogenerator, Energy Technol. 6 (2018) 781–789.
DOI: 10.1002/ente.201700614
Google Scholar
[6]
S. Ju, C-H. Ji, Impact-based piezoelectric vibration energy harvester, Appl. Energy. 214 (2018) 139-151.
DOI: 10.1016/j.apenergy.2018.01.076
Google Scholar
[7]
N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy. 80 (2010) 105567.
DOI: 10.1016/j.nanoen.2020.105567
Google Scholar
[8]
J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang, J-H. Ryou, Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator, Nano Energy. 57 (2018) 670–679.
DOI: 10.1016/j.nanoen.2018.12.080
Google Scholar
[9]
A. Krishna, S. Palanivelu, Energy Harvesting from Vibrating Cantilever Structure of Different Base Materials using Piezoelectric Material: Theoretical and Experimental Approach, International Journal of Engineering. 36 (2023) 152-162.
DOI: 10.5829/ije.2023.36.01a.17
Google Scholar
[10]
Tejkaran Naroliay, Vijay K. Guptay, I.A. Parinov, Design and analysis of a shear mode piezoelectric energy harvester for rotationalmotion system, J. Adv. Dielect. 10 (2020) 2050008.
DOI: 10.1142/s2010135x20500083
Google Scholar
[11]
X. Wang, P.R. Wilson, R.B. Leite, G. Chen, H. Freitas, K. Asadi, E.C.P. Smits, I. Katsouras, P.R.F. Rocha, An Energy Harvester for Low-Frequency Electrical Signals. Energy Technol. 8 (2020) 2000114.
DOI: 10.1002/ente.202000114
Google Scholar
[12]
J. Ghazanfarian, M.M. Mohammadi, Piezoelectric Energy Harvesting: a Systematic Review of Reviews, Actuators. 10 (2021) 312.
DOI: 10.3390/act10120312
Google Scholar
[13]
M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018), Smart Materials and Structures. 28 (2019) 113001.
DOI: 10.1088/1361-665x/ab36e4
Google Scholar
[14]
Y. Tan, Y. Dong, X. Wang, Review of MEMS electromagnetic vibration energy harvester, J. Microelectromech. Syst. 26 (2016) 1–16.
DOI: 10.1109/jmems.2016.2611677
Google Scholar
[15]
C.H. Wong, Z. Dahari, Development of vibration-based piezoelectric raindrop energy harvesting system, J. Electron. Mater. 46 (2017) 1869–1882.
DOI: 10.1007/s11664-016-5252-4
Google Scholar
[16]
V.A. Chebanenko, I.V. Zhilyaev, A.N. Soloviev, A.V. Cherpakov, I.A. Parinov, Numerical optimization of the piezoelectric generators, J. Adv. Dielect. 10 (2020) 2060016.
DOI: 10.1142/s2010135x20600164
Google Scholar
[17]
Anwesa Mohanty, Suraj Parida, Rabindra Kumar Behera, Vibration energy harvesting: A review, J. Adv. Dielect. 9 (2019) 1930001.
DOI: 10.1142/s2010135x19300019
Google Scholar
[18]
R. Li, Y. Yu, B. Zhou, Q. Guo, M. Li, J. Pei, Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator, J. Renew. Sustain. Energy. 10 (2018) 054701.
DOI: 10.1063/1.5002731
Google Scholar
[19]
H. Wu, L. Tang, Y. Yang, C. Soh, A novel two-degrees-of-freedom piezoelectric energy harvester, J. Intell. Mater. Syst. Struct. 24 (2012) 357–368.
DOI: 10.1177/1045389x12457254
Google Scholar
[20]
Changki Mo, Leon J Radziemski, William W Clark, Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system, Smart Mater. Struct. 19 (2010) 025016.
DOI: 10.1088/0964-1726/19/2/025016
Google Scholar
[21]
Xu-rui Chen, Tong-qing Yang, Wei Wang, Xi Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm, Ceramics International. 38 (2012) S271-S274.
DOI: 10.1016/j.ceramint.2011.04.099
Google Scholar
[22]
A.N. Solovyev, L.V. Duong, Optimization for the Harvesting Structure of the Piezoelectric Bimorph Energy Harvesters Circular Plate by Reduced Order Finite Element Analysis, Int. J. Appl. Mech. 8 (2016) 1650029.
DOI: 10.1142/s1758825116500290
Google Scholar
[23]
Y. Dong, T. Yang, Z. Xiao, Y. Liu, X. Wang, Performance enhancement of PZT material for circular diaphragm energy harvester, J. Mater. Sci. Mater. Electron. 26 (2015) 7921–7926.
DOI: 10.1007/s10854-015-3445-x
Google Scholar
[24]
F. Shu, T. Yang, Y. Liu, Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester, AIP Adv. 8 (2018) 045102.
DOI: 10.1063/1.5016200
Google Scholar
[25]
Y. Yang, S. Wang, P. Stein, B-X. Xu, T. Yang, Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: Analysis and identification of optimal structural parameters, Smart Mater. Struct. 26 (2017) 045011.
DOI: 10.1088/1361-665x/aa5fda
Google Scholar
[26]
D.A. Berlincourt, D.R. Curran, H. Jaffe, Physical acoustics (Principles and Methods, V.1) (1964).
Google Scholar
[27]
A.V. Belokon, A.V. Nasedkin, A.N. Soloviev, New Schemes for the Finite-Element Dynamic Analysis of Piezoelectric Devices, Journal of Applied Mathematics and Mechanics. 66 (2002) 481-490.
DOI: 10.1016/s0021-8928(02)00058-8
Google Scholar