Finite Element Analysis and Optimization of the Piezoelectric Circular Diaphragm Energy Harvester

Article Preview

Abstract:

The effectiveness of power generation of the piezoelectric energy harvester (PEH) depends on the coupling between its resonant frequency and the oscillation frequency of the vibration source. The resonant frequency of a PEH is determined by its structural design, and therefore, to improve piezoelectric energy harvester performance, the piezoelectric energy harvester must be optimally designed to achieve the resonant frequency that matches the excitation frequency of the vibration source. This paper presents the design and detailed calculation of the piezoelectric energy harvester in the form of a bimorph piezoelectric circular diaphragm (PCD) structure by finite element analysis (FEA) using the software package ANSYS. Based on analyses and calculations, the optimal structure of the piezoelectric circular diaphragm energy harvester is proposed to meet the specified resonant frequency response matching the vibration source frequency. Detailed calculations of the PEH were performed with an excitation frequency of 100 Hz. With an optimal load resistor of 10.1 kΩ, an output power of 0.287 W was generated at 100 Hz (equal to the resonant frequency of the PEH) under an amplitude of harmonic excitation of 0.1mm. In addition, the research results can be used to fabricate piezoelectric circular diaphragm energy harvester operating at a resonant frequency suitable for the available vibrations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-121

Citation:

Online since:

August 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Ali, W. Raza, X. Li, H. Gul, K-H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy. 57 (2019) 879-902.

DOI: 10.1016/j.nanoen.2019.01.012

Google Scholar

[2] H. Liu, J. Zhong, C. Lee, S-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5 (2018) 041306.

Google Scholar

[3] T. Kumar, R. Kumar, V.S. Chauhan, J. Twiefel, Finite-Element Analysis of a Varying-Width Bistable Piezoelectric Energy Harvester, Energy Technol. 3 (2015) 1243–1249.

DOI: 10.1002/ente.201500191

Google Scholar

[4] M. Leinonen, J. Juuti, H. Jantunen, J. Palosaari, Energy Harvesting with a Bimorph Type Piezoelectric Diaphragm Multilayer Structure and Mechanically Induced Pre-stress, Energy Technol. 4 (2016) 620–624.

DOI: 10.1002/ente.201500429

Google Scholar

[5] J. Zhu, X. Niu, X. Hou, J. He, X. Chou, C. Xue, W. Zhang, Highly Reliable Real-time Self-powered Vibration Sensor Based on a Piezoelectric Nanogenerator, Energy Technol. 6 (2018) 781–789.

DOI: 10.1002/ente.201700614

Google Scholar

[6] S. Ju, C-H. Ji, Impact-based piezoelectric vibration energy harvester, Appl. Energy. 214 (2018) 139-151.

DOI: 10.1016/j.apenergy.2018.01.076

Google Scholar

[7] N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy. 80 (2010) 105567.

DOI: 10.1016/j.nanoen.2020.105567

Google Scholar

[8] J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang, J-H. Ryou, Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator, Nano Energy. 57 (2018) 670–679.

DOI: 10.1016/j.nanoen.2018.12.080

Google Scholar

[9] A. Krishna, S. Palanivelu, Energy Harvesting from Vibrating Cantilever Structure of Different Base Materials using Piezoelectric Material: Theoretical and Experimental Approach, International Journal of Engineering. 36 (2023) 152-162.

DOI: 10.5829/ije.2023.36.01a.17

Google Scholar

[10] Tejkaran Naroliay, Vijay K. Guptay, I.A. Parinov, Design and analysis of a shear mode piezoelectric energy harvester for rotationalmotion system, J. Adv. Dielect. 10 (2020) 2050008.

DOI: 10.1142/s2010135x20500083

Google Scholar

[11] X. Wang, P.R. Wilson, R.B. Leite, G. Chen, H. Freitas, K. Asadi, E.C.P. Smits, I. Katsouras, P.R.F. Rocha, An Energy Harvester for Low-Frequency Electrical Signals. Energy Technol. 8 (2020) 2000114.

DOI: 10.1002/ente.202000114

Google Scholar

[12] J. Ghazanfarian, M.M. Mohammadi, Piezoelectric Energy Harvesting: a Systematic Review of Reviews, Actuators. 10 (2021) 312.

DOI: 10.3390/act10120312

Google Scholar

[13] M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018), Smart Materials and Structures. 28 (2019) 113001.

DOI: 10.1088/1361-665x/ab36e4

Google Scholar

[14] Y. Tan, Y. Dong, X. Wang, Review of MEMS electromagnetic vibration energy harvester, J. Microelectromech. Syst. 26 (2016) 1–16.

DOI: 10.1109/jmems.2016.2611677

Google Scholar

[15] C.H. Wong, Z. Dahari, Development of vibration-based piezoelectric raindrop energy harvesting system, J. Electron. Mater. 46 (2017) 1869–1882.

DOI: 10.1007/s11664-016-5252-4

Google Scholar

[16] V.A. Chebanenko, I.V. Zhilyaev, A.N. Soloviev, A.V. Cherpakov, I.A. Parinov, Numerical optimization of the piezoelectric generators, J. Adv. Dielect. 10 (2020) 2060016.

DOI: 10.1142/s2010135x20600164

Google Scholar

[17] Anwesa Mohanty, Suraj Parida, Rabindra Kumar Behera, Vibration energy harvesting: A review, J. Adv. Dielect. 9 (2019) 1930001.

DOI: 10.1142/s2010135x19300019

Google Scholar

[18] R. Li, Y. Yu, B. Zhou, Q. Guo, M. Li, J. Pei, Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator, J. Renew. Sustain. Energy. 10 (2018) 054701.

DOI: 10.1063/1.5002731

Google Scholar

[19] H. Wu, L. Tang, Y. Yang, C. Soh, A novel two-degrees-of-freedom piezoelectric energy harvester, J. Intell. Mater. Syst. Struct. 24 (2012) 357–368.

DOI: 10.1177/1045389x12457254

Google Scholar

[20] Changki Mo, Leon J Radziemski, William W Clark, Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system, Smart Mater. Struct. 19 (2010) 025016.

DOI: 10.1088/0964-1726/19/2/025016

Google Scholar

[21] Xu-rui Chen, Tong-qing Yang, Wei Wang, Xi Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm, Ceramics International. 38 (2012) S271-S274.

DOI: 10.1016/j.ceramint.2011.04.099

Google Scholar

[22] A.N. Solovyev, L.V. Duong, Optimization for the Harvesting Structure of the Piezoelectric Bimorph Energy Harvesters Circular Plate by Reduced Order Finite Element Analysis, Int. J. Appl. Mech. 8 (2016) 1650029.

DOI: 10.1142/s1758825116500290

Google Scholar

[23] Y. Dong, T. Yang, Z. Xiao, Y. Liu, X. Wang, Performance enhancement of PZT material for circular diaphragm energy harvester, J. Mater. Sci. Mater. Electron. 26 (2015) 7921–7926.

DOI: 10.1007/s10854-015-3445-x

Google Scholar

[24] F. Shu, T. Yang, Y. Liu, Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester, AIP Adv. 8 (2018) 045102.

DOI: 10.1063/1.5016200

Google Scholar

[25] Y. Yang, S. Wang, P. Stein, B-X. Xu, T. Yang, Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: Analysis and identification of optimal structural parameters, Smart Mater. Struct. 26 (2017) 045011.

DOI: 10.1088/1361-665x/aa5fda

Google Scholar

[26] D.A. Berlincourt, D.R. Curran, H. Jaffe, Physical acoustics (Principles and Methods, V.1) (1964).

Google Scholar

[27] A.V. Belokon, A.V. Nasedkin, A.N. Soloviev, New Schemes for the Finite-Element Dynamic Analysis of Piezoelectric Devices, Journal of Applied Mathematics and Mechanics. 66 (2002) 481-490.

DOI: 10.1016/s0021-8928(02)00058-8

Google Scholar