[1]
Carter, J., Rahmani, A., Dibaj, M. and Akrami, M., 2023. Rainwater Energy Harvesting Using Micro-Turbines in Downpipes. Energies, 16(4), p.1660.
DOI: 10.3390/en16041660
Google Scholar
[2]
Ibrahim, N.F. and Othman, N.A., 2022. Rainwater Harvesting Power for Different Height of Building in Pasir Gudang. Evolution in Electrical and Electronic Engineering, 3(2), pp.155-165.
Google Scholar
[3]
Şevik, S. and Aktaş, A., 2022. Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays. Renewable Energy, 181, pp.490-503.
DOI: 10.1016/j.renene.2021.09.064
Google Scholar
[4]
Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A. and Stroosnijder, L., 2012. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa–a review. Physics and Chemistry of the Earth, Parts A/B/C, 47, pp.139-151.
DOI: 10.1016/j.pce.2011.08.015
Google Scholar
[5]
Chaichan, M.T., 2018. Combustion and emission characteristics of E85 and diesel blend in conventional diesel engine operating in PPCI mode. Thermal science and Engineering progress, 7, pp.45-53.
DOI: 10.1016/j.tsep.2018.04.013
Google Scholar
[6]
Lima, M.A., Mendes, L.F.R., Mothé, G.A., Linhares, F.G., de Castro, M.P.P., Da Silva, M.G. and Sthel, M.S., 2020. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, 33, p.100504.
DOI: 10.1016/j.envdev.2020.100504
Google Scholar
[7]
Wang, J., Liu, J., Yang, Z., Mei, C., Wang, H. and Zhang, D., 2023. Green infrastructure optimization considering spatial functional zoning in urban stormwater management. Journal of Environmental Management, 344, p.118407.
DOI: 10.1016/j.jenvman.2023.118407
Google Scholar
[8]
Arifoglu, Y.D. and Demirhan, E., 2023. The Application of rain water and solar energy system on green roof one of the building in Sakarya University. Sakarya University Journal of Science (SAUJS)/Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2).
DOI: 10.16984/saufenbilder.976398
Google Scholar
[9]
Al-Maamary, H.M., Kazem, H.A. and Chaichan, M.T., 2016. Changing the energy profile of the GCC States: A review. International Journal of Applied Engineering Research (IJAER), 11(3), pp.1980-1988.
Google Scholar
[10]
Al-Waeli, A.H., Kazem, H.A., Chaichan, M.T. and Sopian, K., 2019. Photovoltaic/thermal (PV/T) systems: principles, design, and applications. Springer Nature.
DOI: 10.1007/978-3-030-27824-3
Google Scholar
[11]
Malinowski, P.A., Stillwell, A.S., Wu, J.S. and Schwarz, P.M., 2015. Energy-water nexus: Potential energy savings and implications for sustainable integrated water management in urban areas from rainwater harvesting and gray-water reuse. Journal of Water Resources Planning and Management, 141(12), p.A4015003.
DOI: 10.1061/(asce)wr.1943-5452.0000528
Google Scholar
[12]
Şevik, S. and Aktaş, A., 2022. Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays. Renewable Energy, 181, pp.490-503.
DOI: 10.1016/j.renene.2021.09.064
Google Scholar
[13]
Habib, N.A., Ali, A.J., Chaichan, M.T. and Kareem, M., 2021. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Thermal Science and Engineering Progress, 23, p.100877.
DOI: 10.1016/j.tsep.2021.100877
Google Scholar
[14]
Yuan, W., Liu, Q., Song, S., Lu, Y., Yang, S., Fang, Z. and Shi, Z., 2023. A climate-water quality assessment framework for quantifying the contributions of climate change and human activities to water quality variations. Journal of Environmental Management, 333, p.117441.
DOI: 10.1016/j.jenvman.2023.117441
Google Scholar
[15]
Ageed, Z.S., Zeebaree, S.R., Sadeeq, M.A., Abdulrazzaq, M.B., Salim, B.W., Salih, A.A., Yasin, H.M. and Ahmed, A.M., 2021. A state of art survey for intelligent energy monitoring systems. Asian Journal of Research in Computer Science, 8(1), pp.46-61.
DOI: 10.9734/ajrcos/2021/v8i130192
Google Scholar
[16]
Gernaat, D.E., de Boer, H.S., Daioglou, V., Yalew, S.G., Müller, C. and van Vuuren, D.P., 2021. Climate change impacts on renewable energy supply. Nature Climate Change, 11(2), pp.119-125.
DOI: 10.1038/s41558-020-00949-9
Google Scholar
[17]
Puppala, H., Ahuja, J., Tamvada, J.P. and Peddinti, P.R., 2023. New technology adoption in rural areas of emerging economies: The case of rainwater harvesting systems in India. Technological Forecasting and Social Change, 196, p.122832.
DOI: 10.1016/j.techfore.2023.122832
Google Scholar
[18]
Xu, W.D., Fletcher, T.D., Burns, M.J. and Cherqui, F., 2020. Real time control of rainwater harvesting systems: The benefits of increasing rainfall forecast window. Water Resources Research, 56(9), p.e2020WR027856.
DOI: 10.1029/2020wr027856
Google Scholar
[19]
Al-Waeli, A. H. A., Kazem, H. A., Sopian, K. and Chaichan, M. T., 2018. Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia, International Journal of Sustainable Energy, 37(6), pp.558-578
DOI: 10.1080/14786451.2017.1323900
Google Scholar
[20]
Kazem, H.A., Yousif, J., Chaichan, M.T. and Al‐Waeli, A.H., 2019. Experimental and deep learning artificial neural network approach for evaluating grid‐connected photovoltaic systems. International Journal of Energy Research, 43(14), pp.8572-8591.
DOI: 10.1002/er.4855
Google Scholar
[21]
Al-Waeli, A.H., Al-Kabi, A.H., Al-Mamari, A., Kazem, H.A. and Chaichan, M.T., 2017. Evaluation of the economic and environmental aspects of using photovoltaic water pumping system. In 9th International Conference on Robotic, Vision, Signal Processing and Power Applications: Empowering Research and Innovation (pp.715-723). Springer Singapore.
DOI: 10.1007/978-981-10-1721-6_78
Google Scholar
[22]
Reyneke, B., Cloete, T.E., Khan, S. and Khan, W., 2018. Rainwater harvesting solar pasteurization treatment systems for the provision of an alternative water source in peri-urban informal settlements. Environmental Science: Water Research & Technology, 4(2), pp.291-302.
DOI: 10.1039/c7ew00392g
Google Scholar
[23]
Al‐Waeli, A.H., Kazem, H.A., Yousif, J.H., Chaichan, M.T. and Sopian, K., 2019. Mathematical and neural network models for predicting the electrical performance of a PV/T system. International Journal of Energy Research, 43(14), pp.8100-8117.
DOI: 10.1002/er.4807
Google Scholar
[24]
Zhang, D., Guo, P., Xu, B. and Li, J., 2023. A deep-water in-situ power generation system based on chain-driven hydrokinetic turbine. Journal of Cleaner Production, 385, p.135774.
DOI: 10.1016/j.jclepro.2022.135774
Google Scholar