[1]
Rizwee, M., & Rao, Dr. P. S. (2021). Analysis & Optimization of Parameters During EDM of Aluminium Metal Matrix Composite. Journal of University of Shanghai for Science and Technology, 23(3).
DOI: 10.51201/jusst12671
Google Scholar
[2]
Huu, P. N., Muthuramalingam T, Van, D. P., Shirguppikar, S., Tien, D. H., Van, T. N., & Trong, L. N. (2022a). Multi-objects optimization in µ-EDM using AlCrNi-coated tungsten carbide electrode for Ti-6AL-4 V. International Journal of Advanced Manufacturing Technology, 122(5–6), 2267–2276.
DOI: 10.1007/s00170-022-10022-8
Google Scholar
[3]
Kunal, P. Sudhakar Rao, Mohd. Yunus Khan, K. Saidaiah (2022). A review of electrical discharge machining on various superalloy.
DOI: 10.1016/j.matpr.2022.04.429
Google Scholar
[4]
Palanisamy, D., Devaraju, A., Manikandan, N., Balasubramanian, K., & Arulkirubakaran, D. (2020). Experimental investigation and optimization of process parameters in EDM of aluminium metal matrix composites. Materials Today: Proceedings, 22, 525–530.
DOI: 10.1016/j.matpr.2019.08.145
Google Scholar
[5]
Panchal, V. A., Patel, R. K., Patel, B. A., & Patel, H. A. (2014). International Journal on Recent and Innovation Trends in Computing and Communication Effect of Process Parameters on Surface Quality and MRR in EDM of SS 440 C Using ANN.
Google Scholar
[6]
Banu, A., & Ali, M. Y. (2016). Electrical Discharge Machining (EDM): A Review. International Journal of Engineering Materials and Manufacture, 1(1), 3–10.
DOI: 10.26776/ijemm.01.01.2016.02
Google Scholar
[7]
Harish, I., & Sai Phani Kumar, K. (2022). Comparative Analysis Of Two Different Wire Electrodes In A Wire EDM Machining Using TOPSIS Technique. In International Journal of Mechanical Engineering (Vol. 7, Issue 5).
Google Scholar
[8]
Abhilash, P. M., & Chakradhar, D. (2022). Multi-response Optimization of Wire EDM of Inconel 718 Using a Hybrid Entropy Weighted GRA-TOPSIS Method. Process Integration and Optimization for Sustainability, 6(1), 61–72.
DOI: 10.1007/s41660-021-00202-6
Google Scholar
[9]
D'Urso, G., Maccarini, G., & Ravasio, C. (2016). Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. International Journal of Advanced Manufacturing Technology, 85(9–12), 2013–2025.
DOI: 10.1007/s00170-015-7010-9
Google Scholar
[10]
Phan huu nguyen, Muthuramalingam T, Dong van pham, Shailesh Shirguppikar, Tung Nhu Nguye, Tam Chi Nguyen andTrong Nguyen(2022). Multi-Objective optimization of micro EDM using TOPSIS method with Tungsten carbide. Indian Academy of Sciences.
DOI: 10.1007/s12046-022-01900-8
Google Scholar
[11]
Das, A. K., Kumar, P., Sethi, A., Singh, P. K., & Hussain, M. (2016). Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(7), 2029–2037.
DOI: 10.1007/s40430-016-0488-8
Google Scholar
[12]
Huu, P. N., Muthuramalingam T, Van, D. P., Shirguppikar, S., Tien, D. H., Van, T. N., & Trong, L. N. (2022b). Multi-objects optimization in µ-EDM using AlCrNi-coated tungsten carbide electrode for Ti-6AL-4 V. International Journal of Advanced Manufacturing Technology, 122(5–6), 2267–2276.
DOI: 10.1007/s00170-022-10022-8
Google Scholar
[13]
Boopathi, S. (2022). An Extensive Review on Sustainable Developments of Dry and Near-Dry Electrical Discharge Machining Processes. In Journal of Manufacturing Science and Engineering (Vol. 144, Issue 5). American Society of Mechanical Engineers (ASME).
DOI: 10.1115/1.4052527
Google Scholar
[14]
Janardhana, K., Anushkannan, N. K., Dinakaran, K. P., Puse, R. K., & Boopathi, S. (2023). Experimental investigation on microhardness, surface roughness, and white layer thickness of dry EDM. Engineering Research Express, 5(2), 025022.
DOI: 10.1088/2631-8695/acce8f
Google Scholar
[15]
Khan, M. Y., & Rao, P. S. (2019). Hybridization of electrical discharge machining process. International Journal of Engineering and Advanced Technology, 9(1), 1059–1065.
Google Scholar
[16]
Liu, S., Thangaraj, M., Moiduddin, K., & Al-Ahmari, A. M. (2022). Influence of Adaptive Gap Control Mechanism and Tool Electrodes on Machining Titanium (Ti-6Al-4V) Alloy in EDM Process. Materials, 15(2).
DOI: 10.3390/ma15020513
Google Scholar
[17]
Huang, C. H., Yang, A. B., & Hsu, C. Y. (2018). The optimization of micro EDM milling of Ti–6Al–4V using a grey Taguchi method and its improvement by electrode coating. International Journal of Advanced Manufacturing Technology, 96(9–12), 3851–3859.
DOI: 10.1007/s00170-018-1841-0
Google Scholar
[18]
Pham Van, D., Shirguppikar, S., Nguyen Huu, P., Nguyen Duc, M., Bui Tien, T., Le Thi Phuong, T., & Nguyen Trong, L. (2022). Multi-objects optimization in μ-EDM using AlCrN coated tungsten carbide electrode by Deng's method. Manufacturing Review.
DOI: 10.1051/mfreview/2022018
Google Scholar
[19]
Mac, B., shirguppikar, shailesh, &Ganachari, V. (2023). The Optimization of Micro-Edm Machining Process when Using Carbon Coated Micro Electrode as a Tool. Journal of Machine Engineering.
DOI: 10.36897/jme/165929
Google Scholar
[20]
Naveen Anthuvan, R., &Krishnaraj, V. (2020). Effect of coated and treated electrodes on Micro-EDM characteristics of Ti-6Al-4V. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10).
DOI: 10.1007/s40430-020-02578-x
Google Scholar
[21]
Thakur, A., Rao, P. S., & Khan, M. Y. (2021). Study and optimization of surface roughness parameter during electrical discharge machining of titanium alloy (Ti-6246). Materials Today: Proceedings, 44, 838–847.
DOI: 10.1016/j.matpr.2020.10.785
Google Scholar
[22]
Manikandan, N., Arulkirubakaran, D., Palanisamy, D., & Raju, R. (2019). Influence of wire-EDM textured conventional tungsten carbide inserts in machining of aerospace materials (Ti–6Al–4V alloy). Materials and Manufacturing Processes, 34(1), 103–111.
DOI: 10.1080/10426914.2018.1544712
Google Scholar
[23]
Phan, N. H., Pham, &, Dong, V., Hoang, &, Dung, T., Van Thien, N., Muthuramalingam, & T., Shirguppikar, S., Nguyen, &, Tam, C., & Ly, T. (n.d.). Multi-object optimization of EDM by Taguchi-DEAR method using AlCrNi coated electrode.
DOI: 10.1007/s00170-021-07032-3
Google Scholar
[24]
Kumar, R., Roy, S., Gunjan, P., Sahoo, A., Sarkar, D. D., & Das, R. K. (2018). Analysis of MRR and Surface Roughness in Machining Ti-6Al-4V ELI Titanium Alloy Using EDM Process. Procedia Manufacturing, 20, 358–364.
DOI: 10.1016/j.promfg.2018.02.052
Google Scholar
[25]
Rahul, Mishra, D. K., Datta, S., &Masanta, M. (2018). Effects of Tool Electrode on EDM Performance of Ti-6Al-4V. Silicon, 10(5), 2263–2277.
DOI: 10.1007/s12633-018-9760-0
Google Scholar
[26]
Patel, V. D., Patel2, D. M., Patel, U. J., Patel, B., Butani, N., Scholar, R., & Tech Student, M. (2014). Review of Wire-Cut EDM Process on Titanium alloy. In Journal of Engineering Research and Applications www.ijera.com (Vol. 4).
Google Scholar
[27]
Sawant, S. N., Patil, S. K., Unune, D. R., Nazare, P., & Wojciechowski, S. (2023). Effect of copper, tungsten copper and tungsten carbide tools on micro-electric discharge drilling of Ti–6Al–4V alloy. Journal of Materials Research and Technology, 24, 4242–4257.
DOI: 10.1016/j.jmrt.2023.04.067
Google Scholar
[28]
Chen, S.-G., Lian, M.-Q., Wu, X.-Y., Lei, J.-G., Zhao, H., Peng, T.-J., Luo, F., Yang, J., & Xu, B. (n.d.). Study on the micro-EDM processing characteristics of Ti-6Al-4V alloy with different electrode materials.
DOI: 10.1007/s00170-021-07664-5
Google Scholar
[29]
Razak, M. A., Abdul-Rani, A. M., &Nanimina, A. M. (2015). Improving EDM Efficiency with Silicon Carbide Powder-Mixed Dielectric Fluid. International Journal of Materials, Mechanics and Manufacturing, 3(1), 40–43.
DOI: 10.7763/ijmmm.2015.v3.163
Google Scholar
[30]
Shirguppikar, S., Patil, M. S., Phan, N. H., Muthuramalingam, T., Dong, P. V., Tam, N. C., Tai, B. T., Minh, N. D., & Duc, N. V. (2021). Assessing the effects of uncoated and coated electrode on response variables in electrical discharge machining for ti-6al-4v titanium alloy. Tribology in Industry, 43(4), 524–534.
DOI: 10.24874/ti.1020.12.20.03
Google Scholar
[31]
Rathod, R., Kamble, D., &Ambhore, N. (2022). Performance evaluation of electric discharge machining of titanium alloy-a review. In Journal of Engineering and Applied Science (Vol. 69, Issue 1). Springer Science and Business Media B.V.
DOI: 10.1186/s44147-022-00118-z
Google Scholar
[32]
Singh, A. K., Mahajan, R., Tiwari, A., Kumar, D., &Ghadai, R. K. (2018). Effect of Dielectric on Electrical Discharge Machining: A Review. IOP Conference Series: Materials Science and Engineering, 377(1).
DOI: 10.1088/1757-899x/377/1/012184
Google Scholar
[33]
Mohd. Yunus Khan , P. Sudhakar Rao , B.S. Pabla (2019) Investigations on the feasibility of jatropha curcas oil based biodiesel for sustainable dielectric fluid in EDM process Materials Today: Proceeding.
DOI: 10.1016/j.matpr.2019.11.325
Google Scholar
[34]
Mohd. Yunus Khan, P. Sudhakar Rao (2019). Optimization of Process Parameters of Electrical Discharge Machining Process For Performance Improvement. International Journal of Innovative Technology and Exploring Engineering.
Google Scholar
[35]
Mumtaz Rizwee, Dr. P. Sudhakar Rao(2021). Analysis & Optimization of Parameters during EDM of Aluminium Metal Matrix Composite. Journal of University of Shanghai for Science and Technology.
DOI: 10.51201/Jusst12671
Google Scholar
[36]
Mumtaz Rizwee, Dr. P Sudhakar Rao (2018). A Review On Electro Discharge Machining Of Metal Matrix Composite. International Journal of Technical Innovation in Modern Engineering & Science
Google Scholar
[37]
Ashish Kumar, P.S. Rao(2019). Study of the optimization of process parameters in Electric discharge machining for different Alloy: A Review, IJRAR.
Google Scholar
[38]
Mumtaz Rizwee, P. Sudhakar Rao, and Md Fuzail Ahmad (2021). Parametric Optimization of Electro Discharge Process during Machining of Aluminum/Boron Carbide/Graphite Composite, SAE International Journal of Materials and Manufacturing.
DOI: 10.4271/05-15-01-0007
Google Scholar
[39]
Mumtaz Rizwee, P. Sudhakar Rao, and Mohd Yunus Khan(2022), Experimental Investigation and Optimization of EDM Parameters During Machining of Al/B4C/Gr MMC, 1 Chapter
DOI: 10.1201/9781003203681-9
Google Scholar