Au/Go Based Partially Uncladded SMF for Detection of Glucose Concentration

Article Preview

Abstract:

The determination of glucose concentrations in the blood and urine were important to monitor the health of human being. This study was carried out to study the effect GO thicknesses in enhancing the sensitivity of the Au/GO sensor for detection of glucose with various concentration. The partial unclad SMF was fabricated by using low-cost mechanical etching technique. The cladding thickness was successfully reduced from 125μm to 124μm by using this technique. To enhance the strength of evanescent field, Au nanoparticles were deposited on top of unclad fiber via drop casting method. To excite surface plasmon polaritons. GO with various layers from one to five layers were coated on the Au coated partial unclad SMF. The optimum sensitivity of the Au/GO SMF was resulted as three layers of GO with laser excitation under infrared range, λ=1310nm was employed. In conclusion, the effect of GO thicknesses mainly influenced the performance of the proposed sensor, in which the best thickness of GO to enhance the evanescent field and the excitation of SPP is three layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.C. Wang and A.R. Lee, 2015. Recent developments in blood glucose sensors. Journal of food and drug analysis, 23(2), pp.191-200.

Google Scholar

[2] H.S. Seltzer, E. W. Allen, A. L. Herron and M. T. Brennan, 1967. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. The Journal of clinical investigation, 46(3), pp.323-335.

DOI: 10.1172/jci105534

Google Scholar

[3] B. Bhavadharini, M. M. Mahalakshmi, K. Maheswari, G. Kalaiyarasi, R. M. Anjana, M. Deepa, H. Ranjani, M. Priya, R. Uma, S. Usha and S. D. Pastakia, 2016. Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings. Acta diabetologica, 53(1), pp.91-97.

DOI: 10.1007/s00592-015-0761-9

Google Scholar

[4] F. A. Cespedes, 2017. RF Sensing System for Continuous Blood Glucose Monitoring (Doctoral dissertation, University of South Florida).

Google Scholar

[5] S. A. Zaidi and J. H. Shin, 2016. Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 149, pp.30-42.

DOI: 10.1016/j.talanta.2015.11.033

Google Scholar

[6] X. Niu, X. Li, J. Pan, Y. He, F. Qiu and Y. Yan, 2016. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Advances, 6(88), pp.84893-84905.

DOI: 10.1039/c6ra12506a

Google Scholar

[7] S. Rauf, M. A. Hayat Nawaz, M. Badea, J. L. Marty and A. Hayat, 2016. Nano-engineered biomimetic optical sensors for glucose monitoring in diabetes. Sensors, 16(11), p.1931.

DOI: 10.3390/s16111931

Google Scholar

[8] G. De Micheli, 2015, June. E-health: From sensors to systems. In Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on (pp.3-6). IEEE.

DOI: 10.1109/transducers.2015.7180846

Google Scholar

[9] M. R. Mahmoudian, W. J. Basirun, P. M. Woi, M. Sookhakian, R.Yousefi, H. Ghadimi and Y. Alias, 2016. Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni (OH) 2 as non-enzymatic electrochemical sensors for glucose detection. Materials Science and Engineering: C, 59, pp.500-508.

DOI: 10.1016/j.msec.2015.10.055

Google Scholar

[10] M. Fajkus, J. Nedoma, R. Martinek, V. Vasinek, H. Nazeran and P. Siska, 2017. A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors, 17(1), p.111.

DOI: 10.3390/s17010111

Google Scholar

[11] Martinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Kepak, S., Bilik, P. and Nazeran, H., 2017. A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors, 17(4), p.890.

DOI: 10.3390/s17040890

Google Scholar

[12] S. Shukla, N. K. Sharma and V. Sajal, 2016. Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films. Brazilian Journal of Physics, 46(3), pp.288-293.

DOI: 10.1007/s13538-016-0406-7

Google Scholar

[13] F. Yu,Y. Okabe, Q. Wu and N. Shigeta, 2016. Fiber-optic sensor-based remote acoustic emission measurement of composites. Smart Materials and Structures, 25(10), p.105033.

DOI: 10.1088/0964-1726/25/10/105033

Google Scholar

[14] W. M. Mukhtar, N. A. Marzuki and A. R. A. Rashid, 2017. Manipulating microbending losses in single mode optical fiber for pressure sensing. Journal of Advanced Research in Applied Sciences and Engineering Technology, 9(1), pp.14-21.

Google Scholar

[15] W. M. Mukhtar, P. S. Menon and S. Shaari, 2012. Microfabricated fiber probe by combination of electric arc discharge and chemical etching techniques. In Advanced Materials Research (Vol. 462, pp.38-41). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/amr.462.38

Google Scholar

[16] L. Li, Y. Liang, J. Guang, W. Cui, X. Zhang, J. F. Masson and W. Peng, 2017. Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Optics express, 25(22), pp.26950-26957.

DOI: 10.1364/oe.25.026950

Google Scholar

[17] A. Maimaiti, V. G. Truong and S. N. Chormaic, 2016, November. Ultrathin optical fibers for particle trapping and manipulation. In Asia Communications and Photonics Conference (pp. ATh2B-1). Optical Society of America.

DOI: 10.1364/acpc.2016.ath2b.1

Google Scholar

[18] W. M. Mukhtar, S. Shaari, P. S. Menon and A. A. Ehsan, 2012. Analysis of biconical taper geometries to the transmission losses in optical microfibers. Optoelectronics and Advanced Materials, Rapid Communications, 6(11-12), pp.988-992.

Google Scholar

[19] G. Son, Y. Jung and K. Yu, 2017. Tapered Optical Fiber Couplers Fabricated by Droplet-Based Chemical Etching. IEEE Photonics Journal, 9(5), pp.1-8.

DOI: 10.1109/jphot.2017.2738661

Google Scholar

[20] B. Mulyanti, F. Abdurrahman, R. E. Pawinanto, A. Heri. and G. Sugandi, G., 2017. Fabrication of Polymer Optical Fiber as Intrinsic Optical Sensor Using Etching Technique. Advanced Science Letters, 23(2), pp.1310-1313.

DOI: 10.1166/asl.2017.8384

Google Scholar

[21] Z. Harith, M. Batumalay, N. Irawati, S. W. Harun, H. Arof and H. Ahmad, 2017. Relative humidity sensor employing tapered plastic optical fiber coated with seeded Al-doped ZnO. Optik, 144, pp.257-262.

DOI: 10.1016/j.ijleo.2017.06.123

Google Scholar

[22] N. F. Murat, W. M. Mukhtar, A. R. A. Rashid, K. A. Dasuki and A. A. R. A. Yussuf, 2016, August. Optimization of gold thin films thicknesses in enhancing SPR response. In Semiconductor Electronics (ICSE), 2016 IEEE International Conference on (pp.244-247). IEEE.

DOI: 10.1109/smelec.2016.7573637

Google Scholar

[23] W. M. Mukhtar, F. H. Ahmad, N. D. Samsuri and N. F. Murat, 2018, June. Study on plasmon absorption of hybrid Au-GO-GNP films for SPR sensing application. In AIP Conference Proceedings (Vol. 1972, No. 1, p.030007). AIP Publishing.

DOI: 10.1063/1.5041228

Google Scholar

[24] N. D. Samsuri, W. M. Mukhtar, A. R. A. Rashid, K. A. Dasuki and A. A. R. H. A. Yussuf, 2017. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications. In EPJ Web of Conferences (Vol. 162, p.01002). EDP Sciences.

DOI: 10.1051/epjconf/201716201002

Google Scholar

[25] K. Shah N. K. and Sharma, 2018, August. SPR based fiber optic sensor utilizing thin film of nickel. In AIP Conference Proceedings (Vol. 2009, No. 1, p.020040). AIP Publishing.

DOI: 10.1063/1.5052109

Google Scholar

[26] W. M. Mukhtar, R. M. Halim and H. Hassan, 2017. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms. In EPJ Web of Conferences (Vol. 162, p.01001). EDP Sciences.

DOI: 10.1051/epjconf/201716201001

Google Scholar

[27] Y. Zhang, Y. Wei, Z. Liu, E. Zhao, Y. Zhang, L. Yuan and J. Yang, J, 2015, September. A SPR sensor based on twin-core fiber. In 24th International Conference on Optical Fibre Sensors (Vol. 9634, p. 96347P). International Society for Optics and Photonics.

DOI: 10.1117/12.2193871

Google Scholar

[28] W. M. Mukhtar, N. F. L. Manaf and R. M. Halim, 2021. Identification of Recycled Cooking Oil by Varying Number of Au/GO Coated Fiber Optic's Loop Ring. ASM Sc. J., 15, 2021, pp.1-8.

DOI: 10.32802/asmscj.2021.682

Google Scholar

[29] N. Z. A. Khirri, W. M. Mukhtar, R. M. Halim, A. R. A. Rashid, and N. A. M. Taib, 2023. AuNPs/GO Coated U-Shape Polished SMF Based Localized SPR Sensor for Musta'mal Water Identification, IJNeaM, 16, p.73–86.

DOI: 10.58915/ijneam.v16idecember.388

Google Scholar

[30] W. M. Mukhtar, N. F. Murat, N. D. Samsuri, N. D. and K. A. Dasuki, 2018. Maximizing the response of SPR signal: A vital role of light excitation wavelength. In AIP Conference Proceedings (Vol. 2016, No. 1). AIP Publishing.

DOI: 10.1063/1.5055506

Google Scholar

[31] W. M. Mukhtar and I. Kamarolzaman, 2020. Real time detection of milk's spoilage using Au/GO bend SMF sensor based on localized surface plasmon resonance effect. Journal of Mechanical Engineering and Sciences, 14(4), pp.7540-7550.

DOI: 10.15282/jmes.14.4.2020.20.0594

Google Scholar