Study of Laser Cutting Parameters Affecting Metal Surface: An Integrated Literature Review

Article Preview

Abstract:

Steel alloys made of sheet metal are important materials because of their high strength applications in construction, automobiles, ships, aircraft, and military products. Among the best and fastest non-traditional ways to cut sheet metal these days is laser cutting. Therefore, it's important to comprehend how the parameters of LC affect the quality of the cut. A thorough analysis was provided to find out which LC parameters have the greatest impact on cutting quality as well as how they affect the kerf quality and cut surface. An overview of the benefits of LC over other machining techniques was provided. Furthermore, an explanation of the various laser sources and the laser cutting technique were given. by eliminating each source's spectrum of cut material thicknesses and their benefits. Graphs and formulae provided a detailed illustration of the cutting performance characteristics. Tables and graphs that display the whole classification of the examined papers were used to utilized to arrange the discussion and analysis of the research into such a detailed discussions. It was discovered that Steel alloys are the most commonly used for laser cutting (59%), followed by aluminum alloys (13%) and titanium alloys (12%). While other subjects constitute 16% of research in this field It was also found that The most common parameters utilized as controls are cutting speed (30%), Laser power (23%), Assist gas pressure (21%), Pulse frequency (9%) and Focal position (7%), in general the ideal parameters to achieve low (SR), small (HAZ) width, small (KW) and small (KT) are low (Pu), high (V), medium (P), high (SOD), medium (PF), medium (PW), small (ND), small (T), and N2 as an assist gas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-32

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Rajaram, J. Sheikh-Ahmad, and S. H. Cheraghi, "CO2 laser cut quality of 4130 steel," Int. J. Mach. Tools Manuf., vol. 43, no. 4, p.351–358, 2003, doi: 10.1016/S0890-6955(02) 00270-5.

DOI: 10.1016/s0890-6955(02)00270-5

Google Scholar

[2] S. Marimuthu, J. Dunleavey, Y. Liu, M. Antar, and B. Smith, "Laser cutting of aluminium-alumina metal matrix composite," Opt. Laser Technol., vol. 117, no. April, p.251–259, 2019.

DOI: 10.1016/j.optlastec.2019.04.029

Google Scholar

[3] M. Alsaadawy, M. Dewidar, A. Said, I. Maher, and T. A. Shehabeldeen, A comprehensive review of studying the influence of laser cutting parameters on surface and kerf quality of metals, vol. 130, no. 3–4. Springer London, 2024.

DOI: 10.1007/s00170-023-12768-1

Google Scholar

[4] L. Shanjin and W. Yang, "An investigation of pulsed laser cutting of titanium alloy sheet," Opt. Lasers Eng., vol. 44, no. 10, p.1067–1077, 2006.

DOI: 10.1016/j.optlaseng.2005.09.003

Google Scholar

[5] K. A. Ghany and M. Newishy, "Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser," J. Mater. Process. Technol., vol. 168, no. 3, p.438–447, 2005.

DOI: 10.1016/j.jmatprotec.2005.02.251

Google Scholar

[6] D. Patidar and R. S. Rana, "The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review," Mater. Today Proc., vol. 5, no. 9, p.17753–17762, 2018.

DOI: 10.1016/j.matpr.2018.06.099

Google Scholar

[7] U. Çaydaş and A. Hasçalik, "Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics," Opt. Laser Technol., vol. 40, no. 7, p.987–994, 2008.

DOI: 10.1016/j.optlastec.2008.01.004

Google Scholar

[8] H. A. Eltawahni and A.-G. Olabi, "Optimisation of Process Parameters of High Power Co 2 Laser Cutting for Advanced Materials," no. July, p.74, 2011.

Google Scholar

[9] C. Wandera and D. A. Salminen, "LASER CUTTING OF AUSTENITIC STAINLESS STEEL WITH A HIGH QUALITY LASER BEAM," Motilal Nehru Natl. Inst. …, vol. 4, no. 91, p.6061, 2013, [Online]. Available: http://www.recrewa.ac.in/Uploads/NBA/ NBA_2682021212250.pdf

Google Scholar

[10] D. Pramanik, A. S. Kuar, S. Sarkar, and S. Mitra, "Enhancement of sawing strategy of multiple surface quality characteristics in low power fiber laser micro cutting process on titanium alloy sheet," Opt. Laser Technol., vol. 122, no. September 2019, p.105847, 2020.

DOI: 10.1016/j.optlastec.2019.105847

Google Scholar

[11] K. Szwajka, J. Zielińska-Szwajka, and T. Trzepieciński, "Improving the Surface Integrity of 316L Steel in the Context of Bioimplant Applications," Materials (Basel)., vol. 16, no. 9, 2023.

DOI: 10.3390/ma16093460

Google Scholar

[12] V. K. Sharma and V. Kumar, "Study on material transfer and surface properties during fiber laser cutting of A653 galvanized steel sheet," J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 8, p.1–17, 2019.

DOI: 10.1007/s40430-019-1842-4

Google Scholar

[13] Y. A. Turkkan, M. Aslan, A. Tarkan, Ö. Aslan, C. Yuce, and N. Yavuz, "Multi-Objective Optimization of Fiber Laser Cutting of Stainless-Steel Plates Using Taguchi-Based Grey Relational Analysis," Metals (Basel)., vol. 13, no. 1, 2023.

DOI: 10.3390/met13010132

Google Scholar

[14] P. Badoniya, "CO 2 Laser Cutting of Different Materials-A Review," Int. Res. J. Eng. Technol., no. February, p.1–12, 2018, [Online]. Available: www.irjet.net

Google Scholar

[15] A. Riveiro, F. Quintero, F. Lusquiños, R. Comesaña, and J. Pou, "Parametric investigation of CO2 laser cutting of 2024-T3 alloy," J. Mater. Process. Technol., vol. 210, no. 9, p.1138–1152, 2010.

DOI: 10.1016/j.jmatprotec.2010.02.024

Google Scholar

[16] Y. Chi, G. Gu, H. Yu, and C. Chen, "Laser surface alloying on aluminum and its alloys: A review," Opt. Lasers Eng., vol. 100, no. May 2017, p.23–37, 2018.

DOI: 10.1016/j.optlaseng.2017.07.006

Google Scholar

[17] X. L. Gao, L. J. Zhang, J. Liu, and J. X. Zhang, "Porosity and microstructure in pulsed Nd:YAG laser welded Ti6Al4V sheet," J. Mater. Process. Technol., vol. 214, no. 7, p.1316–1325, 2014.

DOI: 10.1016/j.jmatprotec.2014.01.015

Google Scholar

[18] Y. F. Tzeng, "Parametric analysis of the pulsed Nd:YAG laser seam-welding process," J. Mater. Process. Technol., vol. 102, no. 1, p.40–47, 2000.

DOI: 10.1016/S0924-0136(00)00447-7

Google Scholar

[19] A. Sharma and V. Yadava, "Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile," Opt. Laser Technol., vol. 44, no. 1, p.159–168, 2012.

DOI: 10.1016/j.optlastec.2011.06.012

Google Scholar

[20] A. Kumar Pandey and A. Kumar Dubey, "Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet," Opt. Laser Technol., vol. 44, no. 6, p.1858–1865, 2012.

DOI: 10.1016/j.optlastec.2012.01.019

Google Scholar

[21] M. Zaied, E. Bayraktar, D. Katundi, M. Boujelbene, and I. Miraoui, "Effect of laser cutting parameters on surface quality of low carbon steel," J. Achiev. Mater. Manuf. Eng., vol. 54, no. 1, p.128–134, 2012.

Google Scholar

[22] A. Lamikiz, M. S., Ukar, E. T. Girot "Internal Characterization And Hole Formation," vol. i, p.55–62, 2013.

Google Scholar

[23] S. Stelzer, A. Mahrle, A. Wetzig, and E. Beyer, "Experimental investigations on fusion cutting stainless steel with fiber and CO2 laser beams," Phys. Procedia, vol. 41, p.399–404, 2013.

DOI: 10.1016/j.phpro.2013.03.093

Google Scholar

[24] U. V Patel and S. M. Sanghavi, "International Journal Of Engineering Sciences & Research Technology," vol. 3, no. 4, p.1–5, 2014.

Google Scholar

[25] R. Biswas, A. S. Kuar, and S. Mitra, "Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet," Opt. Lasers Eng., vol. 60, p.1–11, 2014.

DOI: 10.1016/j.optlaseng.2014.03.014

Google Scholar

[26] A. Cekic, D. Begic-Hajdarevic, M. Kulenovic, and A. Omerspahic, "CO2 laser cutting of alloy steels using N2 assist gas," Procedia Eng., vol. 69, p.310–315, 2014.

DOI: 10.1016/j.proeng.2014.02.237

Google Scholar

[27] U. Thombansen, T. Hermanns, and S. Stoyanov, "Setup and maintenance of manufacturing quality in CO2 laser cutting," Procedia CIRP, vol. 20, no. C, p.98–102, 2014.

DOI: 10.1016/j.procir.2014.05.037

Google Scholar

[28] C. Leone, S. Genna, A. Caggiano, V. Tagliaferri, and R. Molitierno, "An investigation on Nd:YAG laser cutting of Al 6061 T6 alloy sheet," Procedia CIRP, vol. 28, p.64–69, 2015.

DOI: 10.1016/j.procir.2015.04.012

Google Scholar

[29] V. S. N. P. samy, A.Manigandan, "Parametric Investigation of Process Parameters for Laser Cutting Process," Int. J. Innov. Res. Sci. Eng. Technol., vol. 4, no. 5, p.2773–2779, 2015.

DOI: 10.15680/ijirset.2015.0405017

Google Scholar

[30] C. H. Fu, J. F. Liu, and A. Guo, "Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents," Appl. Surf. Sci., vol. 353, p.291–299, 2015.

DOI: 10.1016/j.apsusc.2015.06.105

Google Scholar

[31] A. B. Lopez, E. Assunção, L. Quintino, J. Blackburn, and A. Khan, "High-power fiber laser cutting parameter optimization for nuclear Decommissioning," Nucl. Eng. Technol., vol. 49, no. 4, p.865–872, 2017.

DOI: 10.1016/j.net.2017.02.004

Google Scholar

[32] K. Jarosz, P. Löschner, and P. Niesłony, "Effect of cutting speed on surface quality and heat-affected zone in laser cutting of 316L stainless steel," Procedia Eng., vol. 149, no. June, p.155–162, 2016.

DOI: 10.1016/j.proeng.2016.06.650

Google Scholar

[33] D. J. Kotadiya and D. H. Pandya, "Parametric Analysis of Laser Machining with Response Surface Method on SS-304," Procedia Technol., vol. 23, p.376–382, 2016.

DOI: 10.1016/j.protcy.2016.03.040

Google Scholar

[34] S. Razi, K. Madanipour, and M. Mollabashi, "Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures," Opt. Laser Technol., vol. 80, p.237–246, 2016.

DOI: 10.1016/j.optlastec.2015.12.022

Google Scholar

[35] K. Tamura, R. Ishigami, and R. Yamagishi, "Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser," J. Nucl. Sci. Technol., vol. 53, no. 6, p.916–920, 2016.

DOI: 10.1080/00223131.2015.1080633

Google Scholar

[36] D. J. Kotadiya, J. M. Kapopara, A. R. Patel, C. G. Dalwadi, and D. H. Pandya, "Parametric analysis of process parameter for Laser cutting process on SS-304," Mater. Today Proc., vol. 5, no. 2, p.5384–5390, 2018.

DOI: 10.1016/j.matpr.2017.12.124

Google Scholar

[37] A. F. M. Tahir and S. N. Aqida, "An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology," Opt. Laser Technol., vol. 92, no. June 2016, p.142–149, 2017.

DOI: 10.1016/j.optlastec.2017.01.005

Google Scholar

[38] M. Schleier, B. Adelmann, B. Neumeier, and R. Hellmann, "Burr formation detector for fiber laser cutting based on a photodiode sensor system," Opt. Laser Technol., vol. 96, p.13–17, 2017.

DOI: 10.1016/j.optlastec.2017.04.027

Google Scholar

[39] B. S. Yilbas, M. M. Shaukat, and F. Ashraf, "Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process," Opt. Laser Technol., vol. 93, p.67–73, 2017.

DOI: 10.1016/j.optlastec.2017.02.014

Google Scholar

[40] S. Mullick, A. K. Agrawal, and A. K. Nath, "Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser," Opt. Laser Technol., vol. 81, p.168–179, 2016.

DOI: 10.1016/j.optlastec.2016.02.006

Google Scholar

[41] A. Riveiro et al., "Laser cutting using off-axial supersonic rectangular nozzles," Precis. Eng., vol. 51, no. September, p.78–87, 2018.

DOI: 10.1016/j.precisioneng.2017.07.013

Google Scholar

[42] A. Riveiro et al., "Laser cutting of aluminum alloy Al-2024-T3," Procedia Manuf., vol. 13, p.396–401, 2017.

DOI: 10.1016/j.promfg.2017.09.028

Google Scholar

[43] M. Boujelbene, A. S. Alghamdi, I. Miraoui, E. Bayraktar, and M. Gazbar, "Effects of the laser cutting parameters on the micro-hardness and on the heat affected zone of the mi-hardened steel," Int. J. Adv. Appl. Sci., vol. 4, no. 5, p.19–25, 2017.

DOI: 10.21833/ijaas.2017.05.003

Google Scholar

[44] A. El-Wardany, H. Sonbol, and M. Mahdy, "an Investigation Into the Effect of Co2 Laser Cutting Variables on Cutting Edge Quality of Stainless Steel 316 Sheets," Int. Conf. Appl. Mech. Mech. Eng., vol. 18, no. 18, p.1–12, 2018.

DOI: 10.21608/amme.2018.35006

Google Scholar

[45] H. TAHERI, H. ZAREPOUR FIROUZABADI, and M. Hashemzadeh, "The Effect of Focal Distance and Type of Auxiliary Gas on Cut Width in CO2 Laser Cutting of Stainless and Mild Steel Sheets," Int. J. Adv. Des. Manuf. Technol., vol. 11, no. 4, p.23–29, 2018.

Google Scholar

[46] G. C. Rodrigues, V. Vorkov, and J. R. Duflou, "Optimal laser beam configurations for laser cutting of metal sheets," Procedia CIRP, vol. 74, no. March, p.714–718, 2018.

DOI: 10.1016/j.procir.2018.08.026

Google Scholar

[47] T. Zlámal, Š. Malotová, J. Petrů, Z. Brytan, and V. Musil, "The evaluation of the surface quality after laser cutting," MATEC Web Conf., vol. 244, p.1–7, 2018.

DOI: 10.1051/matecconf/201824402009

Google Scholar

[48] A. Riveiro et al., "Laser cutting: A review on the influence of assist gas," Materials (Basel)., vol. 12, no. 1, 2019.

DOI: 10.3390/ma12010157

Google Scholar

[49] R. Karthikeyan, V. Senthilkumar, M. Thilak, and A. Nagadeepan, "Application of grey relational analysis for optimization of kerf quality during CO2 laser cutting of mild steel," Mater. Today Proc., vol. 5, no. 9, p.19209–19215, 2018.

DOI: 10.1016/j.matpr.2018.06.276

Google Scholar

[50] P. K. Shrivastava and A. K. Pandey, "Multi-Objective Optimization of Cutting Parameters during Laser Cutting of Titanium Alloy Sheet using Hybrid approach of Genetic Algorithm and Multiple Regression Analysis," Mater. Today Proc., vol. 5, no. 11, p.24710–24719, 2018.

DOI: 10.1016/j.matpr.2018.10.269

Google Scholar

[51] R. S. Barge, R. R. Kadam, R. V Ugade, S. B. Sagade, A. K. Chandgude, and M. N. Karad, "Effect and Optimization of Laser Beam Machining Parameters using Taguchi and GRA Method: A Review," Int. Res. J. Eng. Technol., p.1907–1917, 2008, [Online]. Available: www.irjet.net

Google Scholar

[52] I. Amaral, F. J. G. Silva, G. F. L. Pinto, R. D. S. G. Campilho, and R. M. Gouveia, "Improving the cut surface quality by optimizing parameters in the fibre laser cutting process," Procedia Manuf., vol. 38, no. 2019, p.1111–1120, 2019.

DOI: 10.1016/j.promfg.2020.01.199

Google Scholar

[53] M. Sharifi and M. Akbari, "Experimental investigation of the effect of process parameters on cutting region temperature and cutting edge quality in laser cutting of AL6061T6 alloy," Optik (Stuttg)., vol. 184, no. April 2019, p.457–463, 2019.

DOI: 10.1016/j.ijleo.2019.04.105

Google Scholar

[54] K. Rajesh, V. V. Murali Krishnam Raju, S. Rajesh, and N. Sudheer Kumar Varma, "Effect of process parameters on machinability characteristics of CO2 laser process used for cutting SS-304 stainless steels," Mater. Today Proc., vol. 18, p.2065–2072, 2019.

DOI: 10.1016/j.matpr.2019.06.261

Google Scholar

[55] R. Farasati, P. Ebrahimzadeh, J. Fathi, and R. Teimouri, "Optimization of laser micromachining of Ti–6Al–4V," Int. J. Light. Mater. Manuf., vol. 2, no. 4, p.305–317, 2019.

DOI: 10.1016/j.ijlmm.2019.08.002

Google Scholar

[56] G. D. Gautam and D. R. Mishra, "Dimensional accuracy improvement by parametric optimization in pulsed Nd:YAG laser cutting of Kevlar-29/basalt fiber-reinforced hybrid composites," J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 7, p.1–22, 2019.

DOI: 10.1007/s40430-019-1783-y

Google Scholar

[57] C. C. Girdu, L. A. Mihail, and M. V. Dragoi, "Estimation of laser cutting process efficiency," IOP Conf. Ser. Mater. Sci. Eng., vol. 659, no. 1, 2019.

DOI: 10.1088/1757-899X/659/1/012045

Google Scholar

[58] A. Boudjemline, "Surface_Quality_of_Ti-6Al-4V_Titanium_Alloy_Parts_.pdf," vol. 10, no. 4, p.6062–6067, 2020.

DOI: 10.48084/etasr.3719

Google Scholar

[59] S. D. Dondieu et al., "Process optimization for 100 w nanosecond pulsed fiber laser engraving of 316l grade stainless steel," J. Manuf. Mater. Process., vol. 4, no. 4, 2020.

DOI: 10.3390/jmmp4040110

Google Scholar

[60] Y. Yongbin, S. A. Bagherzadeh, H. Azimy, M. Akbari, and A. Karimipour, "Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy," Infrared Phys. Technol., vol. 108, no. May, p.103364, 2020.

DOI: 10.1016/j.infrared.2020.103364

Google Scholar

[61] K. Muralidharan, S. S. P. Kamala, D. Alankrutha, K. B. Prakash, R. Subbiah, and S. Marichamy, "Parametric analysis and performance of laser cutting on strenx steel," Mater. Today Proc., vol. 45, no. xxxx, p.2313–2316, 2021.

DOI: 10.1016/j.matpr.2020.10.573

Google Scholar

[62] N. Levichev, G. C. Rodrigues, and J. R. Duflou, "Real-time monitoring of fiber laser cutting of thick plates by means of photodiodes," Procedia CIRP, vol. 94, no. March, p.499–504, 2020.

DOI: 10.1016/j.procir.2020.09.171

Google Scholar

[63] S. Genna, E. Menna, G. Rubino, and V. Tagliaferri, "Experimental investigation of industrial laser cutting: The effect of the material selection and the process parameters on the kerf quality," Appl. Sci., vol. 10, no. 14, 2020.

DOI: 10.3390/app10144956

Google Scholar

[64] C. Anghel, K. Gupta, and T. C. Jen, "Analysis and optimization of surface quality of stainless steel miniature gears manufactured by CO2 laser cutting," Optik (Stuttg)., vol. 203, 2020.

DOI: 10.1016/j.ijleo.2019.164049

Google Scholar

[65] H. Ding, Z. Wang, and Y. Guo, "Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm," Infrared Phys. Technol., vol. 108, no. April, p.103337, 2020.

DOI: 10.1016/j.infrared.2020.103337

Google Scholar

[66] C. Beausoleil, H. Yazdani Sarvestani, Z. Katz, J. Gholipour, and B. Ashrafi, "Deep and high precision cutting of alumina ceramics by picosecond laser," Ceram. Int., vol. 46, no. 10, p.15285–15296, 2020.

DOI: 10.1016/j.ceramint.2020.03.069

Google Scholar

[67] S. Chaki, D. Bose, and R. N. Bathe, "Multi-Objective Optimization of Pulsed Nd: YAG Laser Cutting Process Using Entropy-Based ANN-PSO Model," Lasers Manuf. Mater. Process., vol. 7, no. 1, p.88–110, 2020.

DOI: 10.1007/s40516-019-00109-8

Google Scholar

[68] M. Madić, S. Mladenović, M. Gostimirović, M. Radovanović, and P. Janković, "Laser cutting optimization model with constraints: Maximization of material removal rate in CO2 laser cutting of mild steel," Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 10, p.1323–1332, 2020.

DOI: 10.1177/0954405420911529

Google Scholar

[69] A. Patel and S. N. Bhavsar, "Experimental investigation to optimize laser cutting process parameters for difficult to cut die alloy steel using response surface methodology," Mater. Today Proc., vol. 43, p.28–35, 2020.

DOI: 10.1016/j.matpr.2020.11.201

Google Scholar

[70] I. Buj-Corral, L. Costa-Herrero, and A. Domínguez-Fernández, "Effect of process parameters on the quality of laser-cut stainless steel thin plates," Metals (Basel)., vol. 11, no. 8, 2021.

DOI: 10.3390/met11081224

Google Scholar

[71] K. Ninikas, J. Kechagias, and K. Salonitis, "The impact of process parameters on surface roughness and dimensional accuracy during co2 laser cutting of pmma thin sheets," J. Manuf. Mater. Process., vol. 5, no. 3, 2021.

DOI: 10.3390/jmmp5030074

Google Scholar

[72] J. Vora et al., "Experimental investigations and pareto optimization of fiber laser cutting process of Ti6AL4V," Metals (Basel)., vol. 11, no. 9, p.1–27, 2021.

DOI: 10.3390/met11091461

Google Scholar

[73] A. D. Tura, H. B. Mamo, and D. G. Desisa, "Multi-objective optimization and analysis for laser beam cutting of stainless steel (SS304) using hybrid statistical tools GA-RSM," IOP Conf. Ser. Mater. Sci. Eng., vol. 1201, no. 1, p.012030, 2021.

DOI: 10.1088/1757-899x/1201/1/012030

Google Scholar

[74] K. E. Hazzan, M. Pacella, and T. L. See, "Understanding the surface integrity of laser surface engineered tungsten carbide," Int. J. Adv. Manuf. Technol., vol. 118, no. 3–4, p.1141–1163, 2022.

DOI: 10.1007/s00170-021-07885-8

Google Scholar

[75] J. Wang, Z. Sun, L. Gu, and H. Azimy, "Investigating the effect of laser cutting parameters on the cut quality of Inconel 625 using Response Surface Method (RSM)," Infrared Phys. Technol., vol. 118, no. August, p.103866, 2021.

DOI: 10.1016/j.infrared.2021.103866

Google Scholar

[76] M. Li, L. "Evaluation of the effect of process parameters on the cut quality in fiber laser cutting of duplex stainless steel using response surface method (RSM)," Infrared Phys. Technol., vol. 118, p.103896, 2021.

DOI: 10.1016/j.infrared.2021.103896

Google Scholar

[77] M. Boujelbene et al., "Effect of cutting conditions on surface roughness of machined parts in CO2laser cutting of pure titanium," Mater. Today Proc., vol. 44, no. January, p.2080–2086, 2021.

DOI: 10.1016/j.matpr.2020.12.179

Google Scholar

[78] D. Rajamani, M. Siva Kumar, E. Balasubramanian, and A. Tamilarasan, "Nd: YAG laser cutting of Hastelloy C276: ANFIS modeling and optimization through WOA," Mater. Manuf. Process., vol. 36, no. 15, p.1746–1760, 2021.

DOI: 10.1080/10426914.2021.1942910

Google Scholar

[79] M. Li, L. Chen, and X. Yang, "A feasibility study on high-power fiber laser cutting of thick CFRP laminates using single-pass strategy," Opt. Laser Technol., vol. 138, no. December 2020, p.106889, 2021.

DOI: 10.1016/j.optlastec.2020.106889

Google Scholar

[80] Y. Singh, J. Singh, S. Sharma, V. Aggarwal, and C. I. Pruncu, "Multi-objective Optimization of Kerf-taper and Surface-roughness Quality Characteristics for Cutting-operation On Coir and Carbon Fibre Reinforced Epoxy Hybrid Polymeric Composites During CO2-Pulsed Laser-cutting Using RSM," Lasers Manuf. Mater. Process., vol. 8, no. 2, p.157–182, 2021.

DOI: 10.1007/s40516-021-00142-6

Google Scholar

[81] C. C. Girdu, C. Gheorghe, C. Radulescu, and D. Cirtina, "Influence of process parameters on cutting width in co2 laser processing of hardox 400 steel," Appl. Sci., vol. 11, no. 13, 2021.

DOI: 10.3390/app11135998

Google Scholar

[82] O. Cavusoglu, "The 3D surface morphological investigation of laser cutting process of 2024-T3 aluminum alloy sheet," Optik (Stuttg)., vol. 238, no. March 2021, p.166739, 2021.

DOI: 10.1016/j.ijleo.2021.166739

Google Scholar

[83] V. Nguyen, F. Altarazi, and T. Tran, "Optimization of Process Parameters for Laser Cutting Process of Stainless Steel 304: A Comparative Analysis and Estimation with Taguchi Method and Response Surface Methodology," Math. Probl. Eng., vol. 2022, 2022.

DOI: 10.1155/2022/6677586

Google Scholar

[84] C. Mamman, O. E. Isaac, and B. Nkoi, "Investigating the Effect of Cutting Speed on Heat Affected Zone in Laser Cutting Process of Stainless Steel," Int. J. Eng. Mod. Technol., vol. 8, no. 4, p.25–32, 2022.

DOI: 10.56201/ijemt.v8.no4.2022.pg25.32

Google Scholar

[85] I. M. R. Najjar, A. M. Sadoun, M. Abd Elaziz, A. W. Abdallah, A. Fathy, and A. H. Elsheikh, "Predicting kerf quality characteristics in laser cutting of basalt fibers reinforced polymer composites using neural network and chimp optimization," Alexandria Eng. J., vol. 61, no. 12, p.11005–11018, 2022.

DOI: 10.1016/j.aej.2022.04.032

Google Scholar

[86] H. K. Hasan, "Analysis of the effecting parameters on laser cutting process by using response surface methodology (RSM) method," J. Achiev. Mater. Manuf. Eng., vol. 110, no. 2, p.59–66, 2022.

DOI: 10.5604/01.3001.0015.7044

Google Scholar

[87] Y. Liu1, K. Yoshigoe3, F. Ullah2, S. Zhang2, and Y. Zhao2, "Multi-objective optimization of high-power fiber laser cutting of thick mild steel by using response surface methodology," Env. Exp Bot, no. 127, p.1–26, 2023.

DOI: 10.2139/ssrn.4334094

Google Scholar

[88] M. H. Gadallah and H. M. Abdu, "Modeling and optimization of laser cutting operations," Manuf. Rev., vol. 2, 2015.

DOI: 10.1051/mfreview/2015020

Google Scholar

[89] H. A. Eltawahni and A.-G. Olabi, "Optimisation of Process Parameters of High Power Co 2 Laser Cutting for Advanced Materials," no. July, p.74, 2011.

Google Scholar

[90] A. A. ABBAS and A, "Optimization Of Parameters Of Laser Non-Linear Inclined Cutting On Stainless Steel Metal," 2014.

Google Scholar