[1]
C. Qian, Z. Fan, Y. Tian, Y. Liu, J. Han, and J. Wang, "A review on magnetic abrasive finishing," Int. J. Adv. Manuf. Technol., vol. 112, no. 3–4, p.619–634, 2021.
DOI: 10.1007/s00170-020-06363-x
Google Scholar
[2]
V. C. Shukla and P. M. Pandey, "Experimental investigations into sintering of magnetic abrasive powder for ultrasonic assisted magnetic abrasive finishing process," Mater. Manuf. Process., vol. 32, no. 1, p.108–114, 2017.
DOI: 10.1080/10426914.2016.1176199
Google Scholar
[3]
P. K. Basera and V. K. Jain, "Reducing Downtime of Repairing for Taper Roller Bearing by Magnetic Abrasive Finishing ( MAF ) Process," vol. 4, no. 1, p.130–136, 2013.
Google Scholar
[4]
B. A. Ahmed, S. K. Shather, and W. K. Hamdan, "Statistical Analysis of Metal Removal during Magnetic Abrasive Finishing Process," J. Eng., vol. 26, no. 8, p.34–45, 2020.
DOI: 10.31026/j.eng.2020.08.03
Google Scholar
[5]
G. Liu, C. Huang, B. Zhao, W. Wang, and S. Sun, "Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review," Chinese J. Mech. Eng. (English Ed., vol. 34, no. 1, 2021.
DOI: 10.1186/s10033-021-00631-x
Google Scholar
[6]
Y. Zou, H. Xie, and Y. Zhang, "Study on surface quality improvement of the plane magnetic abrasive finishing process," Int. J. Adv. Manuf. Technol., vol. 109, no. 7–8, p.1825–1839, 2020.
DOI: 10.1007/s00170-020-05759-z
Google Scholar
[7]
P. Zhu, G. Zhang, J. Du, L. Jiang, P. Zhang, and Y. Cui, "Removal mechanism of magnetic abrasive finishing on aluminum and magnesium alloys," Int. J. Adv. Manuf. Technol., vol. 114, no. 5–6, p.1717–1729, 2021.
DOI: 10.1007/s00170-021-06952-4
Google Scholar
[8]
Y. Zou, H. Xie, C. Dong, and J. Wu, "Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field," Int. J. Adv. Manuf. Technol., vol. 97, no. 5-8, p.2193–2202, 2018.
DOI: 10.1007/s00170-018-2064-0
Google Scholar
[9]
K. Anjaneyulu and G. Venkatesh, "Surface texture improvement of magnetic and non magnetic materials using magnetic abrasive finishing process," Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 19, p.4084–4096, 2021.
DOI: 10.1177/0954406220970590
Google Scholar
[10]
Y. Gao, Y. Zhao, G. Zhang, F. Yin, G. Zhao, and H. Guo, "Characteristics of a novel atomized spherical magnetic abrasive powder," Int. J. Adv. Manuf. Technol., vol. 110, no. 1–2, p.283–290, 2020.
DOI: 10.1007/s00170-020-05810-z
Google Scholar
[11]
V. Saxena, P. S. Yadav, and H. S. Pali, "Effect of magnetic abrasive machining process parameters on internal surface finish," Mater. Today Proc., vol. 25, no. xxxx, p.842–847, 2019.
DOI: 10.1016/j.matpr.2019.11.051
Google Scholar
[12]
H. Xie and Y. Zou, "Investigation on finishing characteristics of magnetic abrasive finishing process using an alternating magnetic field," Machines, vol. 8, no. 4, p.1–17, 2020.
DOI: 10.3390/machines8040075
Google Scholar
[13]
B. Xing and Y. Zou, "Investigation of finishing aluminum alloy A5052 using the magnetic abrasive finishing combined with electrolytic process," Machines, vol. 8, no. 4, p.1–14, 2020.
DOI: 10.3390/machines8040078
Google Scholar
[14]
Y. Zhai, D. A. Lados, E. J. Brown, and G. N. Vigilante, "Fatigue crack growth behavior and microstructural mechanisms in Ti-6Al-4V manufactured by laser engineered net shaping," Int. J. Fatigue, vol. 93, p.51–63, 2016.
DOI: 10.1016/j.ijfatigue.2016.08.009
Google Scholar
[15]
X. Q. Zhang et al., "Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate," Mater. Des., vol. 65, p.425–431, 2015.
DOI: 10.1016/j.matdes.2014.09.001
Google Scholar
[16]
A. Cervellon, S. Hémery, P. Kürnsteiner, B. Gault, P. Kontis, and J. Cormier, "Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature," Acta Mater., vol. 188, p.131–144, 2020.
DOI: 10.1016/j.actamat.2020.02.012
Google Scholar
[17]
F. Ghanem, N. Ben Fredj, H. Sidhom, and C. Braham, "Effects of finishing processes on the fatigue life improvements of electro-machined surfaces of tool steel," Int. J. Adv. Manuf. Technol., vol. 52, no. 5–8, p.583–595, 2011.
DOI: 10.1007/s00170-010-2751-y
Google Scholar
[18]
A. Ahmed and S. Shather, "The Impact of Magnetic Abrasive Finishing (MAF) Process Parameters on the Microhardness of Stainless Steel SUS420 Bubble Cups," Eng. Technol. J., vol. 0, no. 0, p.1–9, 2024.
DOI: 10.30684/etj.2023.142890.1563
Google Scholar
[19]
S. K. Shather and B. Ayad, "Improvement of Incremental Sheet Metal Forming Surface Roughness by Incremental Sheet Metal Forming Surface Roughness By," no. June, 2020.
DOI: 10.4028/www.scientific.net/amr.753-755.203
Google Scholar
[20]
K. Zhou, Y. Chen, Z. W. Du, and F. L. Niu, "Surface integrity of titanium part by ultrasonic magnetic abrasive finishing," Int. J. Adv. Manuf. Technol., vol. 80, no. 5–8, p.997–1005, 2015.
DOI: 10.1007/s00170-015-7028-z
Google Scholar
[21]
S. S. Khangura, L. S. Sran, A. K. Srivastava, and H. Singh, "Investigations into the removal of edm recast layer with magnetic abrasive machining," ASME 2015 Int. Manuf. Sci. Eng. Conf. MSEC 2015, vol. 1, p.1–6, 2015.
DOI: 10.1115/msec2015-9259
Google Scholar
[22]
J. Guo, Z. E. Tan, K. H. Au, and K. Liu, "Experimental investigation into the effect of abrasive and force conditions in magnetic field-assisted finishing," Int. J. Adv. Manuf. Technol., vol. 90, no. 5–8, p.1881–1888, 2017.
DOI: 10.1007/s00170-016-9491-6
Google Scholar
[23]
J. Zhang, A. Chaudhari, and H. Wang, "Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel," J. Manuf. Process., vol. 45, no. February, p.710–719, 2019.
DOI: 10.1016/j.jmapro.2019.07.044
Google Scholar
[24]
P. Y. Wu, M. Hirtler, M. Bambach, and H. Yamaguchi, "Effects of build- and scan-directions on magnetic field-assisted finishing of 316L stainless steel disks produced with selective laser melting," CIRP J. Manuf. Sci. Technol., vol. 31, no. 2019, p.583–594, 2020.
DOI: 10.1016/j.cirpj.2020.08.010
Google Scholar
[25]
Z. Zhang et al., "Fatigue life enhancement in alpha/beta Ti–6Al–4V after shot peening: An EBSD and TEM crystallographic orientation mapping study of surface layer," Materialia, vol. 12, no. April, p.100813, 2020.
DOI: 10.1016/j.mtla.2020.100813
Google Scholar
[26]
S. Takesue, S. Kikuchi, H. Akebono, T. Morita, and J. Komotori, "Characterization of surface layer formed by gas blow induction heating nitriding at different temperatures and its effect on the fatigue properties of titanium alloy," Results Mater., vol. 5, no. January, p.100071, 2020.
DOI: 10.1016/j.rinma.2020.100071
Google Scholar
[27]
W. Schneller et al., "Fatigue strength assessment of additively manufactured metallic structures considering bulk and surface layer characteristics," Addit. Manuf., vol. 40, no. February, p.101930, 2021.
DOI: 10.1016/j.addma.2021.101930
Google Scholar
[28]
K. Arora and A. K. Singh, "Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process," Wear, vol. 476, no. December 2020, 2021.
DOI: 10.1016/j.wear.2021.203693
Google Scholar
[29]
S. Ahmad, R. M. Singari, and R. S. Mishra, "Development of Al2O3-SiO2 based magnetic abrasive by sintering method and its performance on Ti-6Al-4V during magnetic abrasive finishing," Trans. Inst. Met. Finish., vol. 99, no. 2, p.94–101, 2021.
DOI: 10.1080/00202967.2021.1865644
Google Scholar
[30]
Y. Wang, C. C. Tang, H. Y. Chai, Y. Z. Chen, R. Q. Jin, and W. Xiong, "Study on removal of recast layer of NiTi shape memory alloy machined with magnetic field-assisted WEDM-ECM complex process," Int. J. Adv. Manuf. Technol., vol. 129, no. 9–10, p.4335–4354, 2023.
DOI: 10.1007/s00170-023-12588-3
Google Scholar
[31]
Z. Li, J. Jia, Y. Wang, M. Lv, and S. Yang, "Experimental study on polishing of fluid magnetic abrasives for the wire electrical discharge grinding surface of micro-shafts," Int. J. Adv. Manuf. Technol., vol. 129, no. 5–6, p.2067–2085, 2023.
DOI: 10.1007/s00170-023-12425-7
Google Scholar
[32]
A. Gottwalt-Baruth, P. Kubaschinski, M. Waltz, and U. Tetzlaff, "Influence of the cutting method on the fatigue life and crack initiation of non-oriented electrical steel sheets," Int. J. Fatigue, vol. 180, no. September 2023, p.108073, 2024.
DOI: 10.1016/j.ijfatigue.2023.108073
Google Scholar
[33]
S. A. Rasouli and D. Nori, "Investigation of Mass Magnetic Abrasive Finishing Process on Compressor Blades," vol. 12, no. 4, p.5–26, 2024.
Google Scholar