[1]
D.H. Ji, J.H. Lee, S.H. Ko, J.W. Hyeon, J.H. Lee, H.S. Choi, S.K. Jeong, Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine, Appl. Sci. 13 (2023).
DOI: 10.20944/preprints202309.1390.v1
Google Scholar
[2]
S.K. Jeong, H.S. Choi, J.H. Bae, S.S. You, H.S. Kang, S.J. Lee, J.Y. Kim, D.H. Kim, Y.K. Lee, Design and control of high speed unmanned underwater glider, Int. J. Precis. Eng. Manuf. - Green Technol. 3 (2016) 273–279.
DOI: 10.1007/s40684-016-0035-1
Google Scholar
[3]
S.N.V. Satish Kumar, A. Arockia Selvakumar, R. Pratibha Nalini, Development of autonomous robot for underwater applications, Int. J. Control Theory Appl. 9 (2016) 6249–6260.
Google Scholar
[4]
K. Asakawa, K. Watari, H. Ohuchi, M. Nakamura, T. Hyakudome, Y. Ishihara, Buoyancy engine developed for underwater gliders, Adv. Robot. 30 (2016) 41–49.
DOI: 10.1080/01691864.2015.1102647
Google Scholar
[5]
H. Hu, Z. Zhang, L. Li, X. Peng, Energy-optimal motion planning of underwater gliders accounting for seabed topography and ocean currents, Ocean Eng. 288 (2023).
DOI: 10.1016/j.oceaneng.2023.116008
Google Scholar
[6]
K. Panjavarnam, M. Ovinis, S. Karupanan, A New Roll and Pitch Control Mechanism for an Underwater Glider, J. Adv. Res. Fluid Mech. Therm. Sci. 85 (2021) 143–160.
DOI: 10.37934/arfmts.85.1.143160
Google Scholar
[7]
J.M. Steinberg, C.C. Eriksen, Glider sampling simulations in high-resolution ocean models, J. Atmos. Ocean. Technol. 37 (2020) 975–992.
DOI: 10.1175/jtech-d-19-0200.1
Google Scholar
[8]
B.R. Page, S. Ziaeefard, A.J. Pinar, N. Mahmoudian, Highly Maneuverable Low-Cost Underwater Glider: Design and Development, IEEE Robot. Autom. Lett. 2 (2017) 344–349.
DOI: 10.1109/lra.2016.2617206
Google Scholar
[9]
J. Cao, J. Cao, Z. Zeng, B. Yao, L. Lian, Toward Optimal Rendezvous of Multiple Underwater Gliders: 3D Path Planning with Combined Sawtooth and Spiral Motion, J. Intell. Robot. Syst. Theory Appl. 85 (2017) 189–206.
DOI: 10.1007/s10846-016-0382-8
Google Scholar
[10]
A. Lambertini, M. Menghini, J. Cimini, A. Odetti, G. Bruzzone, M. Bibuli, E. Mandanici, L. Vittuari, P. Castaldi, M. Caccia, L. De Marchi, Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project, Sensors 22 (2022).
DOI: 10.3390/s22030744
Google Scholar
[11]
F. Kong, Y. Guo, W. Lyu, Dynamics Modeling and Motion Control of an New Unmanned Underwater Vehicle, IEEE Access 8 (2020) 30119–30126.
DOI: 10.1109/access.2020.2972336
Google Scholar
[12]
J. Yuh, G. Marani, D.R. Blidberg, Applications of marine robotic vehicles, Intell. Serv. Robot. 4 (2011) 221–231.
DOI: 10.1007/s11370-011-0096-5
Google Scholar
[13]
A.A. Mogstad, Ø. Ødegård, S.M. Nornes, M. Ludvigsen, G. Johnsen, A.J. Sørensen, J. Berge, Mapping the historical shipwreck Figaro in the high arctic using underwater sensor-carrying robots, Remote Sens. 12 (2020).
DOI: 10.3390/rs12060997
Google Scholar
[14]
S. Xue, T. Xu, Y. Liu, A. Zeng, B. Ke, S. Zhao, Recent Advances in Marine Geodesy of China, J. Geod. Geoinf. Sci. 6 (2023) 58–66.
Google Scholar
[15]
J. Ren, C. Gao, J. An, Q. Liu, J. Wang, T. Jiang, Z.L. Wang, Arc-Shaped Triboelectric Nanogenerator Based on Rolling Structure for Harvesting Low-Frequency Water Wave Energy, Adv. Mater. Technol. 6 (2021).
DOI: 10.1002/admt.202100359
Google Scholar
[16]
H.-M. Park, G.-S. Park, J.-K. Kim, J.-H. Kim, S.-D. Lee, Deep learning-based oil spill detection with LWIR camera, J. Adv. Mar. Eng. Technol. 45 (2021) 418–424.
DOI: 10.5916/jamet.2021.45.6.418
Google Scholar
[17]
B.K. Tiwari, R. Sharma, Design and Development of a Pump-Driven Variable Buoyancy Engine (VBE) for Autonomous Underwater Vehicles/Gliders, in: Lect. Notes Multidiscip. Ind. Eng., Springer Nature, 2020: p.653–661.
DOI: 10.1007/978-981-32-9487-5_53
Google Scholar
[18]
J. Huang, H.S. Choi, D.W. Jung, J.H. Lee, M.J. Kim, K.B. Choo, H.J. Cho, H.S. Jin, Design and motion simulation of an underwater glider in the vertical plane, Appl. Sci. 11 (2021).
DOI: 10.3390/app11178212
Google Scholar
[19]
A.S. Jaya, H. Wahyudi, Initial Development of A Low-Cost and Efficient Closed-System Buoyancy Engine of A Hybrid AUV Model, J. Unmanned Syst. Technol. 10 (2022) 1–5.
Google Scholar
[20]
L. Wan, D. Zhang, Y. Sun, H. Qin, Y. Cao, G. Chen, Fast fixed-time vertical plane motion control of autonomous underwater gliders in shallow water, J. Franklin Inst. 359 (2022) 10483–10509.
DOI: 10.1016/j.jfranklin.2022.09.036
Google Scholar
[21]
L. Suberg, R.B. Wynn, J. Van Der Kooij, L. Fernand, S. Fielding, D. Guihen, D. Gillespie, M. Johnson, K.C. Gkikopoulou, I.J. Allan, B. Vrana, P.I. Miller, D. Smeed, A.R. Jones, Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas, Methods Oceanogr. 10 (2014) 70–89.
DOI: 10.1016/j.mio.2014.06.002
Google Scholar
[22]
N.A.A. Hussain, T.M. Chung, M.R. Arshad, R.M. Mokhtar, M.Z. Abdullah, Design of an underwater glider platform for shallow-water applications, Int. J. Intell. Def. Support Syst. 3 (2010) 186.
DOI: 10.1504/ijidss.2010.037090
Google Scholar
[23]
K. Panjavarnam, M. Ovinis, S. Karupanan, A New Roll and Pitch Control Mechanism for an Underwater Glider, J. Adv. Res. Fluid Mech. Therm. Sci. 85 (2021).
DOI: 10.37934/arfmts.85.1.143160
Google Scholar
[24]
C. Hockley, B. Butka, Can a conventional propulsion system match the efficiency of an underwater glider buoyancy engine?, Mar. Technol. Soc. J. 53 (2019).
DOI: 10.4031/mtsj.53.2.2
Google Scholar
[25]
H. Hou, A. Arredondo Galeana, Y. Song, G. Xu, Y. Xu, W. Shi, Design of a novel energy harvesting mechanism for underwater gliders using thermal buoyancy engines, Ocean Eng. 278 (2023).
DOI: 10.1016/j.oceaneng.2023.114310
Google Scholar
[26]
M. Elkolali, A. Al-Tawil, A. Alcocer, Design and Testing of a Miniature Variable Buoyancy System for Underwater Vehicles, IEEE Access 10 (2022) 42283–42294.
DOI: 10.1109/access.2022.3167833
Google Scholar
[27]
J.F. Carneiro, J.B. Pinto, F.G. de Almeida, N.A. Cruz, Model Identification and Control of a Buoyancy Change Device, Actuators 12 (2023).
DOI: 10.3390/act12040180
Google Scholar
[28]
J. Falcão Carneiro, J. Bravo Pinto, F. Gomes de Almeida, N.A. Cruz, Design and Experimental Tests of a Buoyancy Change Module for Autonomous Underwater Vehicles, Actuators 11 (2022) 1–21.
DOI: 10.3390/act11090254
Google Scholar
[29]
T. Bai, Y. Ma, J. Yu, Z. Zhang, Numerical Study of Ocean Current effect on the Motion of Underwater Glider, Proc. Int. Offshore Polar Eng. Conf. 1 (2024) 1815–1822.
Google Scholar
[30]
Y. Song, W. Shi, Y. Wang, H. Wu, S. Yang, H. Hou, Y. Xu, Evaluation of energy consumption and motion accuracy for underwater gliders based on quadrant analysis, Ocean Eng. 285 (2023) 1–39.
DOI: 10.1016/j.oceaneng.2023.115399
Google Scholar
[31]
X. Cao, W. Zou, J. Zhuo, D. Ruan, Y. Xu, F. Zhou, X. Yang, T. Li, Design and modeling of an electro-hydraulic buoyancy adjustment actuator, AIP Adv. 13 (2023) 1–9.
DOI: 10.1063/5.0149812
Google Scholar
[32]
P. Yu, Y. Zhou, X. Sun, H. Sang, S. Zhang, Adaptive path following control for wave gliders in ocean currents and waves, 2023.
DOI: 10.2139/ssrn.4418734
Google Scholar
[33]
G. Wang, J. Yu, Y. Yang, Enhancing Trajectory Tracking Performance of Underwater Gliders Using Finite-Time Sliding Mode Control Within a Reinforcement Learning Framework, J. Mar. Sci. Eng. 13 (2025) 1–28.
DOI: 10.3390/jmse13050884
Google Scholar