Efficiency of Buoyancy Force Generation in a Pump-Based Buoyancy Engine for a Small-Scale Underwater Glider

Article Preview

Abstract:

Underwater gliders rely on buoyancy-based propulsion for energy-efficient and long-duration exploration, yet the efficiency of pump-driven buoyancy engines in small-scale systems remains insufficiently understood. This study aimed to evaluate the efficiency, repeatability, and stability of a pump-based buoyancy engine for a scaled underwater glider. A laboratory-scale glider model equipped with a pump-driven fluid transfer system was constructed and tested under controlled buoyancy states. Key performance indicators included servo displacement time, fractional volume of displaced water, average velocity, buoyancy efficiency, and platform stability. Results showed a strong linear relationship between servo displacement time and displaced volume, confirming precise and repeatable buoyancy control. Increasing the displaced volume from 60% to 80% improved the average velocity by 33% and buoyancy efficiency by 41%. Stability analysis indicated that the glider maintained consistent pitch and roll angles during buoyancy transitions, although larger displacements induced greater fluctuations due to longer motor operation and hydrodynamic resistance. These findings demonstrate that optimizing displaced volume is essential to balance velocity and stability in small-scale designs. The study contributes novel experimental evidence on buoyancy-based propulsion and provides a foundation for future work on scalability toward larger gliders and longer-duration missions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-34

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Ji, J.H. Lee, S.H. Ko, J.W. Hyeon, J.H. Lee, H.S. Choi, S.K. Jeong, Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine, Appl. Sci. 13 (2023).

DOI: 10.20944/preprints202309.1390.v1

Google Scholar

[2] S.K. Jeong, H.S. Choi, J.H. Bae, S.S. You, H.S. Kang, S.J. Lee, J.Y. Kim, D.H. Kim, Y.K. Lee, Design and control of high speed unmanned underwater glider, Int. J. Precis. Eng. Manuf. - Green Technol. 3 (2016) 273–279.

DOI: 10.1007/s40684-016-0035-1

Google Scholar

[3] S.N.V. Satish Kumar, A. Arockia Selvakumar, R. Pratibha Nalini, Development of autonomous robot for underwater applications, Int. J. Control Theory Appl. 9 (2016) 6249–6260.

Google Scholar

[4] K. Asakawa, K. Watari, H. Ohuchi, M. Nakamura, T. Hyakudome, Y. Ishihara, Buoyancy engine developed for underwater gliders, Adv. Robot. 30 (2016) 41–49.

DOI: 10.1080/01691864.2015.1102647

Google Scholar

[5] H. Hu, Z. Zhang, L. Li, X. Peng, Energy-optimal motion planning of underwater gliders accounting for seabed topography and ocean currents, Ocean Eng. 288 (2023).

DOI: 10.1016/j.oceaneng.2023.116008

Google Scholar

[6] K. Panjavarnam, M. Ovinis, S. Karupanan, A New Roll and Pitch Control Mechanism for an Underwater Glider, J. Adv. Res. Fluid Mech. Therm. Sci. 85 (2021) 143–160.

DOI: 10.37934/arfmts.85.1.143160

Google Scholar

[7] J.M. Steinberg, C.C. Eriksen, Glider sampling simulations in high-resolution ocean models, J. Atmos. Ocean. Technol. 37 (2020) 975–992.

DOI: 10.1175/jtech-d-19-0200.1

Google Scholar

[8] B.R. Page, S. Ziaeefard, A.J. Pinar, N. Mahmoudian, Highly Maneuverable Low-Cost Underwater Glider: Design and Development, IEEE Robot. Autom. Lett. 2 (2017) 344–349.

DOI: 10.1109/lra.2016.2617206

Google Scholar

[9] J. Cao, J. Cao, Z. Zeng, B. Yao, L. Lian, Toward Optimal Rendezvous of Multiple Underwater Gliders: 3D Path Planning with Combined Sawtooth and Spiral Motion, J. Intell. Robot. Syst. Theory Appl. 85 (2017) 189–206.

DOI: 10.1007/s10846-016-0382-8

Google Scholar

[10] A. Lambertini, M. Menghini, J. Cimini, A. Odetti, G. Bruzzone, M. Bibuli, E. Mandanici, L. Vittuari, P. Castaldi, M. Caccia, L. De Marchi, Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project, Sensors 22 (2022).

DOI: 10.3390/s22030744

Google Scholar

[11] F. Kong, Y. Guo, W. Lyu, Dynamics Modeling and Motion Control of an New Unmanned Underwater Vehicle, IEEE Access 8 (2020) 30119–30126.

DOI: 10.1109/access.2020.2972336

Google Scholar

[12] J. Yuh, G. Marani, D.R. Blidberg, Applications of marine robotic vehicles, Intell. Serv. Robot. 4 (2011) 221–231.

DOI: 10.1007/s11370-011-0096-5

Google Scholar

[13] A.A. Mogstad, Ø. Ødegård, S.M. Nornes, M. Ludvigsen, G. Johnsen, A.J. Sørensen, J. Berge, Mapping the historical shipwreck Figaro in the high arctic using underwater sensor-carrying robots, Remote Sens. 12 (2020).

DOI: 10.3390/rs12060997

Google Scholar

[14] S. Xue, T. Xu, Y. Liu, A. Zeng, B. Ke, S. Zhao, Recent Advances in Marine Geodesy of China, J. Geod. Geoinf. Sci. 6 (2023) 58–66.

Google Scholar

[15] J. Ren, C. Gao, J. An, Q. Liu, J. Wang, T. Jiang, Z.L. Wang, Arc-Shaped Triboelectric Nanogenerator Based on Rolling Structure for Harvesting Low-Frequency Water Wave Energy, Adv. Mater. Technol. 6 (2021).

DOI: 10.1002/admt.202100359

Google Scholar

[16] H.-M. Park, G.-S. Park, J.-K. Kim, J.-H. Kim, S.-D. Lee, Deep learning-based oil spill detection with LWIR camera, J. Adv. Mar. Eng. Technol. 45 (2021) 418–424.

DOI: 10.5916/jamet.2021.45.6.418

Google Scholar

[17] B.K. Tiwari, R. Sharma, Design and Development of a Pump-Driven Variable Buoyancy Engine (VBE) for Autonomous Underwater Vehicles/Gliders, in: Lect. Notes Multidiscip. Ind. Eng., Springer Nature, 2020: p.653–661.

DOI: 10.1007/978-981-32-9487-5_53

Google Scholar

[18] J. Huang, H.S. Choi, D.W. Jung, J.H. Lee, M.J. Kim, K.B. Choo, H.J. Cho, H.S. Jin, Design and motion simulation of an underwater glider in the vertical plane, Appl. Sci. 11 (2021).

DOI: 10.3390/app11178212

Google Scholar

[19] A.S. Jaya, H. Wahyudi, Initial Development of A Low-Cost and Efficient Closed-System Buoyancy Engine of A Hybrid AUV Model, J. Unmanned Syst. Technol. 10 (2022) 1–5.

Google Scholar

[20] L. Wan, D. Zhang, Y. Sun, H. Qin, Y. Cao, G. Chen, Fast fixed-time vertical plane motion control of autonomous underwater gliders in shallow water, J. Franklin Inst. 359 (2022) 10483–10509.

DOI: 10.1016/j.jfranklin.2022.09.036

Google Scholar

[21] L. Suberg, R.B. Wynn, J. Van Der Kooij, L. Fernand, S. Fielding, D. Guihen, D. Gillespie, M. Johnson, K.C. Gkikopoulou, I.J. Allan, B. Vrana, P.I. Miller, D. Smeed, A.R. Jones, Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas, Methods Oceanogr. 10 (2014) 70–89.

DOI: 10.1016/j.mio.2014.06.002

Google Scholar

[22] N.A.A. Hussain, T.M. Chung, M.R. Arshad, R.M. Mokhtar, M.Z. Abdullah, Design of an underwater glider platform for shallow-water applications, Int. J. Intell. Def. Support Syst. 3 (2010) 186.

DOI: 10.1504/ijidss.2010.037090

Google Scholar

[23] K. Panjavarnam, M. Ovinis, S. Karupanan, A New Roll and Pitch Control Mechanism for an Underwater Glider, J. Adv. Res. Fluid Mech. Therm. Sci. 85 (2021).

DOI: 10.37934/arfmts.85.1.143160

Google Scholar

[24] C. Hockley, B. Butka, Can a conventional propulsion system match the efficiency of an underwater glider buoyancy engine?, Mar. Technol. Soc. J. 53 (2019).

DOI: 10.4031/mtsj.53.2.2

Google Scholar

[25] H. Hou, A. Arredondo Galeana, Y. Song, G. Xu, Y. Xu, W. Shi, Design of a novel energy harvesting mechanism for underwater gliders using thermal buoyancy engines, Ocean Eng. 278 (2023).

DOI: 10.1016/j.oceaneng.2023.114310

Google Scholar

[26] M. Elkolali, A. Al-Tawil, A. Alcocer, Design and Testing of a Miniature Variable Buoyancy System for Underwater Vehicles, IEEE Access 10 (2022) 42283–42294.

DOI: 10.1109/access.2022.3167833

Google Scholar

[27] J.F. Carneiro, J.B. Pinto, F.G. de Almeida, N.A. Cruz, Model Identification and Control of a Buoyancy Change Device, Actuators 12 (2023).

DOI: 10.3390/act12040180

Google Scholar

[28] J. Falcão Carneiro, J. Bravo Pinto, F. Gomes de Almeida, N.A. Cruz, Design and Experimental Tests of a Buoyancy Change Module for Autonomous Underwater Vehicles, Actuators 11 (2022) 1–21.

DOI: 10.3390/act11090254

Google Scholar

[29] T. Bai, Y. Ma, J. Yu, Z. Zhang, Numerical Study of Ocean Current effect on the Motion of Underwater Glider, Proc. Int. Offshore Polar Eng. Conf. 1 (2024) 1815–1822.

Google Scholar

[30] Y. Song, W. Shi, Y. Wang, H. Wu, S. Yang, H. Hou, Y. Xu, Evaluation of energy consumption and motion accuracy for underwater gliders based on quadrant analysis, Ocean Eng. 285 (2023) 1–39.

DOI: 10.1016/j.oceaneng.2023.115399

Google Scholar

[31] X. Cao, W. Zou, J. Zhuo, D. Ruan, Y. Xu, F. Zhou, X. Yang, T. Li, Design and modeling of an electro-hydraulic buoyancy adjustment actuator, AIP Adv. 13 (2023) 1–9.

DOI: 10.1063/5.0149812

Google Scholar

[32] P. Yu, Y. Zhou, X. Sun, H. Sang, S. Zhang, Adaptive path following control for wave gliders in ocean currents and waves, 2023.

DOI: 10.2139/ssrn.4418734

Google Scholar

[33] G. Wang, J. Yu, Y. Yang, Enhancing Trajectory Tracking Performance of Underwater Gliders Using Finite-Time Sliding Mode Control Within a Reinforcement Learning Framework, J. Mar. Sci. Eng. 13 (2025) 1–28.

DOI: 10.3390/jmse13050884

Google Scholar