Development of Machine Learning Models for Thermoelectric Figure of Merit Predictions of Doped Chalcogenides

Article Preview

Abstract:

Machine Learning (ML) approach seeks to open new frontiers in the search for novel thermoelectric materials that convert heat waste into useful electrical energy. Five regression-type ML algorithms Linear Regression, Random Forest, XGBoost, Bagging Regressor, and Gradient Boosting Regressor were employed in this study to forecast the thermoelectric figure of merit (ZT) of doped chalcogenide compounds. Gradient Boosting Regressor achieved the best baseline performance (R2 = 94.5%, MAE = 0.073, RMSE = 0.128), further improved with hyperparameter tuning to R2 = 95.8%, MAE = 0.065, and RMSE = 0.112. Compared to the baseline, tuning reduced RMSE by 12.6% and MAE by 10.8%. The optimized model reliably reproduced experimental ZT trends in doped Bi2Te2Se and Ag2Te, validating its predictive capacity. Our findings show that hyperparameter tuning is greatly recommended for high-fidelity predictions in thermoelectrics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-175

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zada R., Ali Z. and Mehmood S., Optoelectronic, elastic and thermoelectric properties of the perovskites (Sr3N)Sb and (Sr3N)Bi. Materials Science in Semiconductor processing 147, 106734 (2022).

DOI: 10.1016/j.mssp.2022.106734

Google Scholar

[2] Zoui M.A, Bentouba S., Velauthapillai D., Zioui N. and Bourouis M., Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery. Energy 253, 124083 (2022).

DOI: 10.1016/j.energy.2022.124083

Google Scholar

[3] Hicks L.D., Harman T.C., Sun X., and Dresselhaus M.S., Experimental Studies of the effect of quantum well structures on the thermoelectric figure of merit, Physical Review B 53, R10493–R10496 (1996).

DOI: 10.1103/PhysRevB.53.R10493

Google Scholar

[4] Balandin A.A., Review: Nanophononics: phonon engineering in nanostructures and nanodevices, Journal of Nanoscience and Nanotechnology 5, (2005) 1015–1022.

DOI: 10.1166/jnn.2005.124

Google Scholar

[5] Li J.F., Liu W.S., Zhao L.D. and Zhou M., High-performance nanostructured thermoelectric materials. Asia Materials, 2, (2010) 152–158.

DOI: 10.1038/asiamat.2010.24

Google Scholar

[6] Hicks L.D and Dresselhaus M.S., Effect of Quantum well structures on the thermoelectric figure of merit, Physical Review B 47, 12727 (1993).

DOI: 10.1103/PhysRevB.47.12727

Google Scholar

[7] Katyal P., Rathi M., Mehra P. and Panwar A.K., Evaluation of Figure of merit of Thermoelectric materials using Machine Learning. International Journal of Advanced Science and Technology 9, (2020) 2858-2863.

Google Scholar

[8] Na, G.S., Jang, S. & Chang, H., Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects. Computational Materials, 7,106 (2021).

DOI: 10.1038/s41524-021-00564-y

Google Scholar

[9] Sheng, Y., Wu, Y., Yang, J., Lu W., Villas P. and Zhang W., Active learning for the power factor prediction in diamond-like thermoelectric materials. Computational Materials 6, 171(2020).

DOI: 10.1038/s41524-020-00439-8

Google Scholar

[10] Shuaibu A., Abdullahi Y.Z, Tanko Y.A, Olusola O.P and Kafayat O.A., Thermoelectric Transport Properties of Ternaries Mixed Chalcogenide Bi2Te2 X (X= S and Se): A First Principle study. Physics Memoir 1, (2019) 67-87.

Google Scholar

[11] Gan, Y., Wang, G., Zhou, J. and Sun Z., Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning. Computational Materials 7, (2021) 176.

DOI: 10.1038/s41524-021-00645-y

Google Scholar

[12] Kim, D.H., Kim, H.S., Rahman, J.U., Shin H.W., Kim T. and Kim S., Thermoelectric transport properties of S-doped In0.9Si0.1Se. Journal of the Korean Ceramic Society, 59, (2022) 64–69.

DOI: 10.1007/s43207-021-00153-1

Google Scholar

[13] Olayinka A.S., Nwankwo W. and Olayinka T.C., Model based Machine Learning Approach to Predict Thermoelectric Figure of Merit, Archive of Science & Technology 1, (2020) 55 - 67.

Google Scholar

[14] Wang T., Zhang C., Snoussi H. and Zhang G., Review: Machine Learning Approaches for Thermoelectric Materials Research. Advanced Functional Materials 30, 1906041 (2020).

DOI: 10.1002/adfm.201906041

Google Scholar

[15] Yang Z., Sheng Y., Zhu C., Ni J., Zhu Z., Xi J., Zhang W. and Yang J., Accurate and explainable machine learning for the power factors of diamond-like thermoelectric materials. Journal of Materiomics 8, (2022) 633 - 639.

DOI: 10.1016/j.jmat.2021.09.008

Google Scholar

[16] Parse, N., & Pinitsoontorn, S.. Machine learning for predicting ZT values of high-performance thermoelectric materials in mid-temperature range. APL Materials, 11(8), 085101 (2023).

DOI: 10.1063/5.0160055

Google Scholar

[17] Gaultois, M. W., Sparks, T. D., Borg, C. K. H., Seshadri, R., Bonificio, W. D., and Clarke, D.R., Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Materials, 4(5), (2016) 053213.

DOI: 10.1063/1.4945682

Google Scholar

[18] Wang, H., Zhou, Y., Zhang, H., & Kanatzidis, M. G., Interpretable machine learning models for thermoelectric material screening using experimental datasets. ACS Applied Materials and Interfaces, 16(18), (2024) 22401–22413.

DOI: 10.1021/acsami.4c19149

Google Scholar

[19] Chen, M., Li, D., & Zhang, G., Machine learning prediction of ZT values in Bi₂Te₃–ₓSeₓ solid solutions using experimental and compositional features. Journal of Materials Chemistry C, Advance Article (2024).

DOI: 10.1039/D4TC01058B

Google Scholar

[20] Xu, W., Zhao, Y., Zhang, X., & Liu, Q., Prediction of thermoelectric figure of merit based on autoencoder and LightGBM. Journal of Applied Physics, 135(7), 074901 (2024).

DOI: 10.1063/5.0186324

Google Scholar

[21] Jiang, T., Zhou, C., Ren, J., & Liang, Q., Hybrid DFT–ML framework for screening chalcogenide thermoelectrics (2024). arXiv preprint arXiv:2405.02618. https://arxiv.org/abs/2405.02618.

Google Scholar

[22] Zhang, Y., Liu, Z., Wu, T., Yang, J., and Wang, X., Enhanced thermoelectric performance in Cu₂₊ₓCd₁₋ₓSnSe₄ by controlled Cu substitution. Journal of Materials Chemistry A, 10(25), (2022) 13211–13220.

Google Scholar

[23] Wang, Y., Li, J., Chen, J., Sun, F., Zhang, H., and Liu, W., High-performance Na- and I-doped PbTe thermoelectrics. ACS Applied Materials & Interfaces, 16(5), (2024) 11425–11434.

DOI: 10.1021/acsami.4c01042

Google Scholar

[24] Li, W., Zhang, C., Zhao, H., Yuan, X., and Tang, X., Thermoelectric properties of Sn-doped Ag₂Se polycrystals. ACS Applied Materials & Interfaces, 16(8), (2024) 14021–14030.

DOI: 10.1021/acsami.4c04085

Google Scholar

[25] Liu, R., Hu, L., Liu, Y., Yang, W., and He, Y., Enhanced performance of Ba-doped BiCuSeO bulk materials. Journal of Materials Chemistry C, 12(4), (2024) 987–995.

Google Scholar

[26] Chen, J., Zhao, Y., Wang, D., Li, Q., and Xu, X., Band engineering and thermoelectric enhancement in Sb-doped GeTe. Journal of Physics D: Applied Physics, 56(10), 105502 (2023).

Google Scholar

[27] Shao, H., Zeng, X., Luo, Y., Huang, Y., and Lin, S., Enhanced thermoelectric performance in Se-doped AgSbTe₂. Materials Today Physics, 24, (2022) 100683.

DOI: 10.1016/j.mtphys.2022.100683

Google Scholar

[28] Tan, G., Zhao, L. D., He, J., and Kanatzidis, M. G., Iodine doping in SnSe for thermoelectric performance optimization. Acta Materialia, 255, 118941 (2023).

DOI: 10.1016/j.actamat.2023.118941

Google Scholar

[29] Zhou, M., Chen, Y., Zhang, H., Wang, S., and Zhu, Y., Bismuth-doped Cu₂Se with low thermal conductivity and good TE efficiency. Journal of Alloys and Compounds, 960, 170097 (2023).

Google Scholar

[30] Kim, H., Park, Y., Jeong, S., Lee, H., and Choi, M., Na-doped PbSe thermoelectric materials with reduced lattice thermal conductivity. npj Computational Materials, 9 (2023) 89.

Google Scholar

[31] Park, J., Ahn, S., Kim, B., and Lee, D., Structural control of Zn-doped Bi₂Te₃ and its thermoelectric performance. Proceedings of Thermoelectrics International Conference, Paper No. 317 (2022).

Google Scholar

[32] Gao, W., Li, Z., Zhang, M., Chen, J., and Wang, Y., Antimony-doped Mg₂Si with improved electrical transport. Journal of Materials Science, 58(14), (2023) 5573–5585.

Google Scholar

[33] Xu, L., Jiang, Z., Wang, F., Liu, Q., and Yang, X., Thermoelectric properties of SnTe with controlled Sb doping. Solid State Communications, 378, 115149 (2023).

DOI: 10.1016/j.ssc.2023.115149

Google Scholar

[34] Cheng, X., Luo, X., Zhao, C., Lin, D., and Yang, P., Thermoelectric transport in Zn-doped Cu₃SbSe₄. Energy Materials Advances, 1(3), (2022) 133–139.

Google Scholar

[35] Cheng, W., Xie, T. and Ong, S.P., A comparative evaluation of machine learning models for predicting thermoelectric properties. npj Computational Materials, 5(1), 59 (2019).

Google Scholar

[36] Ward, L., Agrawal A. Choudhary, A., andWolverton, C., A general purpose Machine Learning framework for predicting properties of inorganic materials. npj Computational Materials 4, 25 (2018).

DOI: 10.1038/npjcompumats.2016.28

Google Scholar

[37] Xie, T. and Grossman, J.C., Heirachical graph neural networks for materials property predictions. Nature Communications, 11, 890 (2021).

Google Scholar