[1]
Zada R., Ali Z. and Mehmood S., Optoelectronic, elastic and thermoelectric properties of the perovskites (Sr3N)Sb and (Sr3N)Bi. Materials Science in Semiconductor processing 147, 106734 (2022).
DOI: 10.1016/j.mssp.2022.106734
Google Scholar
[2]
Zoui M.A, Bentouba S., Velauthapillai D., Zioui N. and Bourouis M., Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery. Energy 253, 124083 (2022).
DOI: 10.1016/j.energy.2022.124083
Google Scholar
[3]
Hicks L.D., Harman T.C., Sun X., and Dresselhaus M.S., Experimental Studies of the effect of quantum well structures on the thermoelectric figure of merit, Physical Review B 53, R10493–R10496 (1996).
DOI: 10.1103/PhysRevB.53.R10493
Google Scholar
[4]
Balandin A.A., Review: Nanophononics: phonon engineering in nanostructures and nanodevices, Journal of Nanoscience and Nanotechnology 5, (2005) 1015–1022.
DOI: 10.1166/jnn.2005.124
Google Scholar
[5]
Li J.F., Liu W.S., Zhao L.D. and Zhou M., High-performance nanostructured thermoelectric materials. Asia Materials, 2, (2010) 152–158.
DOI: 10.1038/asiamat.2010.24
Google Scholar
[6]
Hicks L.D and Dresselhaus M.S., Effect of Quantum well structures on the thermoelectric figure of merit, Physical Review B 47, 12727 (1993).
DOI: 10.1103/PhysRevB.47.12727
Google Scholar
[7]
Katyal P., Rathi M., Mehra P. and Panwar A.K., Evaluation of Figure of merit of Thermoelectric materials using Machine Learning. International Journal of Advanced Science and Technology 9, (2020) 2858-2863.
Google Scholar
[8]
Na, G.S., Jang, S. & Chang, H., Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects. Computational Materials, 7,106 (2021).
DOI: 10.1038/s41524-021-00564-y
Google Scholar
[9]
Sheng, Y., Wu, Y., Yang, J., Lu W., Villas P. and Zhang W., Active learning for the power factor prediction in diamond-like thermoelectric materials. Computational Materials 6, 171(2020).
DOI: 10.1038/s41524-020-00439-8
Google Scholar
[10]
Shuaibu A., Abdullahi Y.Z, Tanko Y.A, Olusola O.P and Kafayat O.A., Thermoelectric Transport Properties of Ternaries Mixed Chalcogenide Bi2Te2 X (X= S and Se): A First Principle study. Physics Memoir 1, (2019) 67-87.
Google Scholar
[11]
Gan, Y., Wang, G., Zhou, J. and Sun Z., Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning. Computational Materials 7, (2021) 176.
DOI: 10.1038/s41524-021-00645-y
Google Scholar
[12]
Kim, D.H., Kim, H.S., Rahman, J.U., Shin H.W., Kim T. and Kim S., Thermoelectric transport properties of S-doped In0.9Si0.1Se. Journal of the Korean Ceramic Society, 59, (2022) 64–69.
DOI: 10.1007/s43207-021-00153-1
Google Scholar
[13]
Olayinka A.S., Nwankwo W. and Olayinka T.C., Model based Machine Learning Approach to Predict Thermoelectric Figure of Merit, Archive of Science & Technology 1, (2020) 55 - 67.
Google Scholar
[14]
Wang T., Zhang C., Snoussi H. and Zhang G., Review: Machine Learning Approaches for Thermoelectric Materials Research. Advanced Functional Materials 30, 1906041 (2020).
DOI: 10.1002/adfm.201906041
Google Scholar
[15]
Yang Z., Sheng Y., Zhu C., Ni J., Zhu Z., Xi J., Zhang W. and Yang J., Accurate and explainable machine learning for the power factors of diamond-like thermoelectric materials. Journal of Materiomics 8, (2022) 633 - 639.
DOI: 10.1016/j.jmat.2021.09.008
Google Scholar
[16]
Parse, N., & Pinitsoontorn, S.. Machine learning for predicting ZT values of high-performance thermoelectric materials in mid-temperature range. APL Materials, 11(8), 085101 (2023).
DOI: 10.1063/5.0160055
Google Scholar
[17]
Gaultois, M. W., Sparks, T. D., Borg, C. K. H., Seshadri, R., Bonificio, W. D., and Clarke, D.R., Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Materials, 4(5), (2016) 053213.
DOI: 10.1063/1.4945682
Google Scholar
[18]
Wang, H., Zhou, Y., Zhang, H., & Kanatzidis, M. G., Interpretable machine learning models for thermoelectric material screening using experimental datasets. ACS Applied Materials and Interfaces, 16(18), (2024) 22401–22413.
DOI: 10.1021/acsami.4c19149
Google Scholar
[19]
Chen, M., Li, D., & Zhang, G., Machine learning prediction of ZT values in Bi₂Te₃–ₓSeₓ solid solutions using experimental and compositional features. Journal of Materials Chemistry C, Advance Article (2024).
DOI: 10.1039/D4TC01058B
Google Scholar
[20]
Xu, W., Zhao, Y., Zhang, X., & Liu, Q., Prediction of thermoelectric figure of merit based on autoencoder and LightGBM. Journal of Applied Physics, 135(7), 074901 (2024).
DOI: 10.1063/5.0186324
Google Scholar
[21]
Jiang, T., Zhou, C., Ren, J., & Liang, Q., Hybrid DFT–ML framework for screening chalcogenide thermoelectrics (2024). arXiv preprint arXiv:2405.02618. https://arxiv.org/abs/2405.02618.
Google Scholar
[22]
Zhang, Y., Liu, Z., Wu, T., Yang, J., and Wang, X., Enhanced thermoelectric performance in Cu₂₊ₓCd₁₋ₓSnSe₄ by controlled Cu substitution. Journal of Materials Chemistry A, 10(25), (2022) 13211–13220.
Google Scholar
[23]
Wang, Y., Li, J., Chen, J., Sun, F., Zhang, H., and Liu, W., High-performance Na- and I-doped PbTe thermoelectrics. ACS Applied Materials & Interfaces, 16(5), (2024) 11425–11434.
DOI: 10.1021/acsami.4c01042
Google Scholar
[24]
Li, W., Zhang, C., Zhao, H., Yuan, X., and Tang, X., Thermoelectric properties of Sn-doped Ag₂Se polycrystals. ACS Applied Materials & Interfaces, 16(8), (2024) 14021–14030.
DOI: 10.1021/acsami.4c04085
Google Scholar
[25]
Liu, R., Hu, L., Liu, Y., Yang, W., and He, Y., Enhanced performance of Ba-doped BiCuSeO bulk materials. Journal of Materials Chemistry C, 12(4), (2024) 987–995.
Google Scholar
[26]
Chen, J., Zhao, Y., Wang, D., Li, Q., and Xu, X., Band engineering and thermoelectric enhancement in Sb-doped GeTe. Journal of Physics D: Applied Physics, 56(10), 105502 (2023).
Google Scholar
[27]
Shao, H., Zeng, X., Luo, Y., Huang, Y., and Lin, S., Enhanced thermoelectric performance in Se-doped AgSbTe₂. Materials Today Physics, 24, (2022) 100683.
DOI: 10.1016/j.mtphys.2022.100683
Google Scholar
[28]
Tan, G., Zhao, L. D., He, J., and Kanatzidis, M. G., Iodine doping in SnSe for thermoelectric performance optimization. Acta Materialia, 255, 118941 (2023).
DOI: 10.1016/j.actamat.2023.118941
Google Scholar
[29]
Zhou, M., Chen, Y., Zhang, H., Wang, S., and Zhu, Y., Bismuth-doped Cu₂Se with low thermal conductivity and good TE efficiency. Journal of Alloys and Compounds, 960, 170097 (2023).
Google Scholar
[30]
Kim, H., Park, Y., Jeong, S., Lee, H., and Choi, M., Na-doped PbSe thermoelectric materials with reduced lattice thermal conductivity. npj Computational Materials, 9 (2023) 89.
Google Scholar
[31]
Park, J., Ahn, S., Kim, B., and Lee, D., Structural control of Zn-doped Bi₂Te₃ and its thermoelectric performance. Proceedings of Thermoelectrics International Conference, Paper No. 317 (2022).
Google Scholar
[32]
Gao, W., Li, Z., Zhang, M., Chen, J., and Wang, Y., Antimony-doped Mg₂Si with improved electrical transport. Journal of Materials Science, 58(14), (2023) 5573–5585.
Google Scholar
[33]
Xu, L., Jiang, Z., Wang, F., Liu, Q., and Yang, X., Thermoelectric properties of SnTe with controlled Sb doping. Solid State Communications, 378, 115149 (2023).
DOI: 10.1016/j.ssc.2023.115149
Google Scholar
[34]
Cheng, X., Luo, X., Zhao, C., Lin, D., and Yang, P., Thermoelectric transport in Zn-doped Cu₃SbSe₄. Energy Materials Advances, 1(3), (2022) 133–139.
Google Scholar
[35]
Cheng, W., Xie, T. and Ong, S.P., A comparative evaluation of machine learning models for predicting thermoelectric properties. npj Computational Materials, 5(1), 59 (2019).
Google Scholar
[36]
Ward, L., Agrawal A. Choudhary, A., andWolverton, C., A general purpose Machine Learning framework for predicting properties of inorganic materials. npj Computational Materials 4, 25 (2018).
DOI: 10.1038/npjcompumats.2016.28
Google Scholar
[37]
Xie, T. and Grossman, J.C., Heirachical graph neural networks for materials property predictions. Nature Communications, 11, 890 (2021).
Google Scholar